Skip to main content
Log in

Formation of an Efficient Energy Transfer Complex between Quantum Dots and Exiguobacterium sibiricum Retinal Protein via the Histidine-Cysteine Anchor

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Resonance energy transfer in self-assembled hybrid structures formed by water-soluble semiconductor CdSe/ZnS quantum dots (QD) with a cysteine shell and the Exiguobacterium sibiricum retinal protein (ESR) in three modifications, with and without a 6-membered C-terminal histidine tag, and with both the histidine tag and C-terminal cysteine residue. Steady-state and time-resolved fluorescence spectroscopy was used to demonstrate that nonradiative energy transfer from QD onto the ESR protein depends on the strength of intermolecular interactions in the hybrid complex. A shift from electrostatic interactions in the QD-ESR donor-acceptor pair to coordinate bond with an additional disulfide bond resulted in an increase of the energy transfer efficiency from 40 to over 90%. The proposed method to produce noncovalent conjugates from QDs and light-sensitive proteins can be a promising one for biomedical applications, as well as for the development of new solar energy accumulation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ESR:

Exiguobacterium sibiricum retinal protein

QD:

quantum dots

QD510:

QD with photoluminescence band maximum at 510 nm

RC:

reaction center

BR:

Halobacterium salinarum bacteriorhodopsin

PM:

purple membranes

DDM:

n-dodecyl-β-D-maltoside

FRET:

Förster resonance energy transfer

References

  1. Oleinikov, V.A., Sukhanova, A.V., and Nabiev, I.R., Ross. Nanotekhnol., 2007, vol. 2, pp. 160–173.

    Google Scholar 

  2. Medintz, I.L. and Mattoussi, H., Phys. Chem. Chem. Phys., 2009, vol. 11, pp. 17–45.

    Article  CAS  PubMed  Google Scholar 

  3. Generalova, A.N., Sizova, S.V., Zdobnova, T.A., Zarifulina, M.M., Artemyev, M.V., Baranov, A.V., Oleinikov, V.A., and Deyev, S.M., Nanomedicine, 2011, vol. 6, pp. 195–209.

    Article  CAS  PubMed  Google Scholar 

  4. Hildebrandt, N., Spillmann, C.M., Algar, W.R., Pons, T., Stewart, M.H., Oh, E., Susumu, K., Diaz, S.A., Delehanty, J.B., and Medintz, I.L., Chem. Rev., 2017, vol. 117, pp. 536–711.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, W., Jiang, G., Yu, J., Pan, Z., Nakazawa, N., Shen, Q., and Zhong, X., ACS Appl. Mater. Interfaces, 2017, vol. 9, pp. 22549–22559.

    Article  CAS  PubMed  Google Scholar 

  6. Aqoma, H., Al Mubarok, M., Hadmojo, W.T., Lee, E.H., Kim, T.W., Ahn, T.K., Oh, S.H., and Jang, S.Y., Adv. Mater., 2017, vol. 29. doi 10.1002/adma.201605756

    Google Scholar 

  7. Rakovich, A., Donegan, J.F., Oleinikov, V., Molinari, M., Sukhanova, A., Nabiev, I., and Rakovich, Y.P., J. Photochem. Photobiol. C: Photochem. Rev., 2014, vol. 20, pp. 17–32.

    Article  CAS  Google Scholar 

  8. Nabiev, I., Rakovich, A., Suckanova, A., Lukashev, E., Zagidullin, V., Pachenko, V., Rakovich, Yu.P., Donegan, J.F., Rubin, A.B., and Govorov, A.O., Angew. Chem., Int. Ed., 2010, vol. 49, pp. 7217–7221.

    Article  Google Scholar 

  9. Lukashev, E.P., Nadtochenko, V.A., Permenova, E.P., Sarkisov, O.M., and Rubin, A.B., Dokl. Biochem. Biophys., 2007, vol. 415, pp. 211–216.

    Article  CAS  PubMed  Google Scholar 

  10. Deisseroth, K., Nat. Neurosci., 2015, vol. 18, pp. 1213–1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Govorunova, E.G., Sineshchekov, O.A., Li, H., and Spudich, J.L., Annu. Rev. Biochem., 2017, vol. 86, pp. 845–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, G., Agren, H., Ohulchanskyy, T.Y., and Prasad, P.N., Chem. Soc. Rev., 2015, vol. 44, pp. 1680–1713.

    Article  CAS  PubMed  Google Scholar 

  13. Generalova, A.N., Chichkov, B.N., and Khaydukov, E.V., Adv. Colloid Interface Sci., 2017, vol. 245, pp. 1–19.

    Article  CAS  Google Scholar 

  14. Hermanson, G.T., Bioconjugation Techniques, San Diego: Academic Press, 2013, 3rd. ed.

    Google Scholar 

  15. Song, F. and Chan, W.C.W., Nanotechnology, 2011, vol. 22. 494006.

    Google Scholar 

  16. Susumu, K., Uyeda, H.T., Medintz, I.L., Pons, T., Delehanty, J.B., and Mattoussi, H., J. Am. Chem. Soc., 2007, vol. 129, pp. 13987–13996.

    Article  CAS  PubMed  Google Scholar 

  17. So, M.K., Xu, C.J., Loening, A.M., Gambhir, S.S., and Rao, J.H., Nat. Biotechnol., 2006, vol. 24, pp. 339–343.

    Article  CAS  PubMed  Google Scholar 

  18. Howarth, M., Takao, K., Hayashi, Y., and Ting, A.Y., Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 7583–7588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mattoussi, H., Mauro, J.M., Goldman, E.R., Anderson, G.P., Sundar, V.C., Mikulec, F.V., and Bawendi, M.G., J. Am. Chem. Soc., 2000, vol. 122, pp. 12142–12150.

    Article  CAS  Google Scholar 

  20. Dennis, A.M. and Bao, G., Nano Lett., 2008, vol. 8, pp. 1439–1445.

    Article  CAS  PubMed  Google Scholar 

  21. Aldeek, F., Safi, M., Zhan, N., Palui, G., and Mattoussi, H., ACS Nano, 2013, vol. 7, pp. 10197–10210.

    Article  CAS  PubMed  Google Scholar 

  22. Gushchin, I., Chervakov, P., Kuzmichev, P., Popov, A., Round, E., Borshchevskiy, V., Ishchenko, A., Petrovskaya, L., Chupin, V., Dolgikh, D., Arseniev, A., Kirpichnikov, M., and Gordeliy, V., Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, pp. 12631–12636.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Balashov, S.P., Petrovskaya, L.E., Imasheva, E.S., Lukashev, E.P., Dioumaev, A.K., Wang, J.M., Sychev, S.V., Dolgikh, D.A., Rubin, A.B., Kirpichnikov, M.P., and Lanyi, J., J. Biol. Chem., 2013, vol. 288, pp. 21254–21265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Petrovskaya, L.E., Lukashev, E.P., Chupin, V.V., Sychev, S.V., Lyukmanova, E.N., Kryukova, E.A., Ziganshin, R.H., Spirina, E.V., Rivkina, E.M., Khatypov, R.A., Erokhina, L.G., and Kirpichnikov, M.P., FEBS Lett., 2010, vol. 584, pp. 4193–4196.

    Article  CAS  PubMed  Google Scholar 

  25. Lanyi, J.K., Annu. Rev. Physiol., 2004, vol. 66, pp. 665–688.

    Article  CAS  PubMed  Google Scholar 

  26. Zaitsev, S.Y., Lukashev, E.P., Solovyeva, D.O., Chistyakov, A.A., and Oleinikov, V.A., Colloids Surf., B, 2014, vol. 117, pp. 248–251.

    Article  CAS  Google Scholar 

  27. Oleinikov, V.A., Lukashev, E.P., Zaitsev, S.Yu., Chistyakov, A.A., Solov’eva, D.O., Mochalov, K.E., and Nabiev, I., Opt. Spektrosk., 2017, vol. 1, pp. 34–39.

    Google Scholar 

  28. Liu, W., Choi, H.S., Zimmer, J.P., Tanaka, E., Frangioni, J.V., and Bawendi, M., J. Am. Chem. Soc., 2007, vol. 129, pp. 14530–14531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Borissevitch, I.E., J. Lumin., 1999, vol. 81, pp. 219–224.

    Article  CAS  Google Scholar 

  30. Lakowicz, J.R., Principles of Fluorescence Spectroscopy, New York: Kluwer Academic/Plenum Publishers, 1999, 2nd ed.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Petrovskaya.

Additional information

Original Russian Text © E.P. Lukashev, L.E. Petrovskaya, M.V. Tretyak, E.A. Kryukova, S.V. Sizova, V.A. Oleinikov, 2018, published in Bioorganicheskaya Khimiya, 2018, Vol. 44, No. 6, pp. 655–663.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukashev, E.P., Petrovskaya, L.E., Tretyak, M.V. et al. Formation of an Efficient Energy Transfer Complex between Quantum Dots and Exiguobacterium sibiricum Retinal Protein via the Histidine-Cysteine Anchor. Russ J Bioorg Chem 44, 687–694 (2018). https://doi.org/10.1134/S1068162018050114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162018050114

Keywords

Navigation