Skip to main content
Log in

Synthesis and biological efficacy of novel piperazine analogues bearing quinoline and pyridine moieties

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

A series of novel piperazine analogues bearing quinolin-8-yloxy-butan-1-ones/pyridin-2-yloxyethanones were synthesized by a simple and convenient approach based on various substituted piperazine incorporating quinoline and pyridine moieties. The analogues were evaluated for in vitro antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferrous ion radical scavenging activities and anti-inflammatory activity by inhibition of Vipera russelli venom (PLA2) and gastric K+/H+-ATPase activities. Most of the title compounds exhibited promising activity. Best antioxidant and PLA2-inhibiting activities were found for piperazine analogues with phenyl and nitro phenyl groups, whereas methoxy group on phenyl piperazine indicated selectivity for the H+/K+-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maxwell, S.R., Drugs, 1995, vol. 49, pp. 345–361.

    Article  CAS  PubMed  Google Scholar 

  2. Bedard, K. and Krause, Kh., Physiol. Rev., 2007, vol. 87, pp. 245–313.

    Article  CAS  PubMed  Google Scholar 

  3. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., and Telser, J., Int. J. Biochem. Cell Biol., 2007, vol 39, pp. 44–87.

    Article  CAS  PubMed  Google Scholar 

  4. Adibhatla, R.M. and Hatcher, J.F., B. M. B. Rep., 2008, vol. 41, pp. 560–567.

    Article  CAS  Google Scholar 

  5. Penston, J.G. and Wormsley, K.G., Aliment. Pharmacol. Ther., 1992, vol. 6, pp. 3–29.

    Article  CAS  PubMed  Google Scholar 

  6. Becker, O.M., Dhanoa, D.S., Marantz, Y., Chen, D., Shacham, S., Cheruku, S., Heifetz, A., Mohanty, P., Fichman, M., Sharadendu, A., Nudelman, R., Kauffman, M., and Noiman, S., J. Med. Chem., 2006, vol. 49, pp. 3116–3135.

    Article  CAS  PubMed  Google Scholar 

  7. Smits, R.A., Lim, H.D., Hanzer, A., Zuiderveld, O.P., Guaita, E., Adami, M., Coruzzi, G., Leurs, R., and Esch, I.J., J. Med. Chem., 2008, vol. 51, pp. 2457–2467.

    Article  CAS  PubMed  Google Scholar 

  8. Rokosz, L.L., Huang, C.Y., Reader, J.C., Stauffer, T.M., Chelsky, D., Sigal, N.H., Ganguly, A.K., and Baldwin, J.J., Bioorg. Med. Chem. Lett., 2005, vol. 15, pp. 5537–5543.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, J.J., Lu, M., Jing, Y.K., and Dong, J.H., Bioorg. Med. Chem., 2006, vol. 14, pp. 6539–6547.

    Article  CAS  PubMed  Google Scholar 

  10. Shami, P.J., Saavedra, J.E., Bonifant, C.L., Chu, J.X., Udupi, V., Malaviya, S., Carr, B. I., Kar, S., Wang, M. F., Jia, L., Ji, X.H., and Keefer, L.K., J. Med. Chem., 2006, vol. 49, pp. 4356–4366.

    Article  CAS  PubMed  Google Scholar 

  11. Gan, L.L., Lu, Y.H., and Zhou, Ch., Chin. J. Biochem. Pharma., 2009, vol. 30, pp.127–131.

    CAS  Google Scholar 

  12. Foye, W.O., Lemke, T.L., and William, D.A., Principles of Medicinal Chemistry, 4th ed., London: Williams and Wilkins, 1995.

    Google Scholar 

  13. Mazzoni, O., Esposito, G., Diurno, M.V., Brancaccio, D., Carotenuto, A., Grieco, P., Novellino, E., and Filippelli, W., Arch. Pharm., 2010, vol. 10, pp. 261–269.

    Google Scholar 

  14. Bandgar, B.P., Patil, S.A., Gacche, R.N., Korbad, B.L., Hote, B.S., Kinkar, S.N., and Jalde, S.S., Bioorg. Med. Chem. Lett., 2010, vol. 20, pp. 730–733.

    Article  CAS  PubMed  Google Scholar 

  15. Sharma, A., Suhas, R., Chandana, K.V., Banu, Sh., and Gowda, D.C., Bioorg. Med. Chem. Lett., 2013, vol. 23, pp. 4096–4098.

    Article  CAS  PubMed  Google Scholar 

  16. Ebrahim zadeh, M.A., Nabavi, S.M., Nabavi, S.F., and Eslami, B., Pharmacology online, 2009, vol. 1, pp. 1318–1323.

    Google Scholar 

  17. Jayanthi, G.P., Kasturi, S., and Gowda, T.V., Toxicon, 1989, vol. 27, pp. 875–885.

    Article  CAS  PubMed  Google Scholar 

  18. Khanum, S.A., Shashikanth S., and Deepak, A.V., Bioorg. Chem., 2004, vol. 32, pp. 211–222.

    Article  CAS  PubMed  Google Scholar 

  19. Ahmed, M., Sharma, R., Nagda, D.P., Jat, J.L., and Talesara, G.L., Arkivoc, 2006, vol. XI, pp. 66–75.

    Google Scholar 

  20. Scherer, R. and Godoy, H.T., Food Chem., 2009, vol. 112, pp. 654–658.

    Article  CAS  Google Scholar 

  21. Gordon, M.H. and Hudson, B.J., The mechanism of antioxidant action in vitro, in Food Antioxidants, London: Elsevier Applied Science, 1990.

    Google Scholar 

  22. Boman, H.G. and Kaletta, U., Biochim. Biophys. Acta, 1957, vol. 24, pp. 619–631.

    Article  CAS  PubMed  Google Scholar 

  23. Fiske, Ch. and Subbarow, Y., J. Biol. Chem., 1925, vol. 66, pp. 375–400.

    CAS  Google Scholar 

  24. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., and Randall, R.J., J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    CAS  PubMed  Google Scholar 

  25. Im, W.B., Sih J.C., Blakeman, D.P., and Mcgrath, J.P., J. Biol. Chem., 1985, vol. 260, pp. 4591–4597.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Khanum.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ghorbani, M., Rekha, N.D., Lakshmi Ranganatha, V. et al. Synthesis and biological efficacy of novel piperazine analogues bearing quinoline and pyridine moieties. Russ J Bioorg Chem 41, 554–561 (2015). https://doi.org/10.1134/S1068162015040020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162015040020

Keywords

Navigation