Skip to main content
Log in

Sorption of Sr(II) Ions with Tricalcium Phosphate in the Presence of Humic Acids

  • Published:
Radiochemistry Aims and scope

Abstract

The sorption behavior of traces Sr(II) toward β-Ca3(PO4)2 (TCP) depending on the concentration of the cation, pH, and concentrations of humic acids (HA) in the solution was studied. Thermodynamic analysis of the solubility of TCP (1) was performed taking into account the formation of Ca(OH)2 (CH, 2), Ca(H2PO4)2 (MCPA, 3), CaHPO4·2H2O (DCPD, 4), Ca5(PO4)3OH (hydroxyapatite, OHAp, 5), and Ca2P2O7 (DCPP, 6). It was shown that, depending on the pH of the solution, the main equilibrium phases with the solution are phases 4 and 5. X-ray diffraction analysis, Raman spectroscopy, and 31P NMR data of the phase (1) samples after contact with a solution of 0.01 M NaNO3 for about 10 days showed the presence of only the phase 1. The solubility of 1 regarding the concentration of Ca2+, PO43– ions and the stoichiometric ratio (Ca/P) in solutions, depending on pH, correspond to the presence of surface phases 4 or 5. The model of surface complexation in the Henry region adequately describes the mechanism of Sr(II) sorption by the surface phase 5 on TCP particles in the form of the SrHPO40 complex. The formation of the HA complex of Sr(II) in solution does not affect distribution coefficient Kd(Sr) in the range of HA concentrations of 0–150 mg/L due to the competitive effect of hydrogen phosphate ions on strontium complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Shchegrov, L.N., Fosfaty dvukhvalentnykh metallov (Divalent metal phosphates), Kiev: Naukova Dumka, 1987.

    Google Scholar 

  2. Compton, R.G. and Sanders, G.H.W, J. Colloid Interface Sci., 1993, vol. 158, p. 439.

    Article  ADS  CAS  Google Scholar 

  3. Chow, L.C, J. Ceram. Soc. Jpn., 1991, vol. 99, no. 10, pp. 954–964.

    Article  CAS  Google Scholar 

  4. Goryachkina, K.A., Nefed’eva, V.V., and Varlamova, L.D, Vestn. Nizhegor. gos. sel’skokhoz. akad., 2013, vol. 3, p. 360.

    Google Scholar 

  5. Kulesh, O.G., Mezentseva, E.G., Simankov, O.V., and Shvedova, O.A., Pochvovedenie i agrokhimiya, 2020, vol. 1, no. 64, pp. 94–103.

    Google Scholar 

  6. Informatsionnoe agentstvo TASS. https://tass.ru/ekonomika/12751945.

  7. Gospodarchik, M.M., Mezhdunarodnoe agentstvo po atomnoi energii (International Atomic Energy Agency), https://www.iaea.org/ru.

  8. Milyutin, V.V., Nekrasova, N.A., and Kaptakov, V.O, Radioaktivnye Otkhody, 2020, vol. 4, no. 13, p. 80.

    Google Scholar 

  9. Remez, V.P., Zheltonozhko, E.V., Sapozhnikov, Yu.A, Radiat. Protect. Dosim., 1998, vol. 75, no. 1–4, p. 77.

    Article  CAS  Google Scholar 

  10. Rossiiskii natsional’nyi doklad: 35 let Chernobyl’skoi avarii: Itogi i perspektivy preodoleniya ee posledstvii v Rossii 1986–2021 (Russian National Report: 35 Years of the Chernobyl Accident: Results and Prospects for Overcoming Its Consequences in Russia 1986–2021), Bol’shov, L.A., Ed., Moscow: Akadem-Print, 2021.

    Google Scholar 

  11. Shashkova, I.L., Ivanets, A.I., Kitikova, N.V., and Sillanpää, M., J. Taiwan Inst. Chem. Eng., 2017, vol. 80, p. 787.

    Article  CAS  Google Scholar 

  12. Nikitin, N.A., Shurankova, O.A., Popova, O.I., Cheshyk, I.A., and Spirov, R.K., Remediation Measures for Radioactively Contaminated Areas, Gupta, D.K. and Voronina, A., Eds., Springer, 2019, p. 113.

    Google Scholar 

  13. Voronina, A.V., Kulyaeva, I.O., and Gupta, D.K., Radiochemistry, 2018, vol. 60, p. 35.

    Article  CAS  Google Scholar 

  14. Sapozhnikov, P.M. and Onishchenko, E.A., Problemy Agrokhimii Ekologii, 2021, vol. 3–4, p. 74.

    Google Scholar 

  15. Ivanets, A.I., Shashkova, I.L., Kitikova, N.V., Drozdova, N.V., Saprunova, N.A., Radkevich, A.V., and Kul’bitskaya, L.V., Radiochemistry, 2014, vol. 56, p. 32.

    Article  CAS  Google Scholar 

  16. Polyakov, E.V., Ioshin, A.A., and Volkov, I.V., Remediation Measures for Radioactively Contaminated Areas, Gupta, D.K. and Voronina, A., Eds., Springer, 2019.

    Google Scholar 

  17. Remediation Measures for Radioactively Contaminated Areas, Gupta, D.K. and Voronina, A., Eds., Springer, 2019.

  18. Yasutaka, T., Naito, W., and Nakanishi, J., PLOS ONE, 2013, vol. 8, no. 9, p. e75308.

    Article  ADS  Google Scholar 

  19. Sanzharova, N.I., Sysoeva, A.A., Isamov, N.N., Aleksakhin, R.M., Kuznetsov, V.K., and Zhigareva, T.L., Ross. Khim. Zh., 2005, vol. XLIX, no. 3, p. 26.

    Google Scholar 

  20. Ivanets, A.I., Shashkova, I.L., Kitikova, N.V., Radkevich, A.V., and Davydov, Yu.P., Radiochemistry, 2015, vol. 57, p. 610.

    Article  CAS  Google Scholar 

  21. İnan, S., J. Radioanal. Nucl. Chem., 2022, vol. 331, p. 1137.

    Article  Google Scholar 

  22. Nishiyama, Yu., Hanafusa, T., Yamashita, J., Yamamoto, Y., and Ono, T., J. Radioanal. Nucl. Chem., 2016, vol. 307, pp. 1279–1285.

    Article  CAS  PubMed  Google Scholar 

  23. Titova, V.I., Varlamova, L.D., Dabakhova, E.V., and Bakharev, A.V., Agrokhim. Vestn., 2011, no. 2, p. 3.

    Google Scholar 

  24. Gregory, T.M., Moreno, E.C., Patel, J.M., and Brown, W.E., J. Res. Natl. Bur. Stand. A: Phys. Chem., 1974, vol. 78A, no. 6, p. 667.

    Article  Google Scholar 

  25. Tung, M.S., Calcium Phosphates in Biological and Industrial Systems, Amjad, Z., Ed., New York: Kluwer Academic, 1998.

    Google Scholar 

  26. Dorozhkin, S.V., World J. Methodol., 2012, vol. 26, no. 2(1), p. 1.

    Article  Google Scholar 

  27. Volkov, I.V. and Polyakov, E.V., Radiochemistry, 2020, vol. 62, p. 141

    Article  CAS  Google Scholar 

  28. Polyakov, E.V., Volkov, I.V., Ioshin, A.A., Chebotina, M.Ya., and Guseva, V.P., Radiochemistry, 2020, vol. 62, pp. 85–94.

    Article  CAS  Google Scholar 

  29. Volkov, I.V., Polyakov, E.V., Denisov, E.I., and Ioshin, A.A., Radiochemistry, 2017, vol. 59, pp. 70–79.

    Article  CAS  Google Scholar 

  30. Fiskus, W.C. and Manning, T.J, Florida Sci., 1998, vol. 61, no. 1, pp. 46–51.

    CAS  Google Scholar 

  31. Yesinowski, J.P., Calcium Phosphates in Biological and Industrial Systems, Amjad, Z., Ed., Boston: Springer, 1998.

    Google Scholar 

  32. Vol’khin, V.V., Egorov, Yu.V., Belinskaya, F.A., Boichinova, E.S., and Malofeeva, G.I., Ionnyi obmen (Ionic Exchange), Senyavin, M.M., Ed., Moscow: Nauka, 1981.

    Google Scholar 

  33. Cawthray, J.F., Creagh, A.L., Haynes, Ch.A., and Orvig, Ch., Inorg. Chem., 2015, vol. 54, pp. 1440.

    Article  CAS  PubMed  Google Scholar 

  34. Kotrly, S. and Sucha, L., Handbook of Chemical Equilibria in Analytical Chemistry, Chichester: Wiley, 1985.

    Google Scholar 

  35. Wu, L., Forsling, W., and Schindler, P.W, J. Colloid Interface Sci., 1991, vol. 147, no. 1, p. 178.

    Article  ADS  CAS  Google Scholar 

  36. Krestou, A., Xenidis, A., and Panias, D., Min. Eng., 2004, vol. 17, p. 373.

    Article  CAS  Google Scholar 

  37. Egorov, Yu.V., Statika sorbtsii mikrokomponentov oksigidratami (Statics of Sorption of Microcomponents by Oxyhydrates), Moscow: Atomizdat, 1975.

    Google Scholar 

  38. Polyakov, E.V., Reaktsii ionno-kolloidnykh form mikrokomponentov i radionuklidov v vodnykh rastvorakh (Reactions of Ionic-Colloidal Forms of Microcomponents and Radionuclides in Aqueous Solutions), Ekaterinburg: UrO RAN, 2003.

    Google Scholar 

  39. Paulenova, A., Rajec, P., Zemberyova, M., Saskoiova, G., and Visacky, V, J. Radoanal. Nucl. Chem., 2000, vol. 246, no. 3, pp. 623–628.

    Article  CAS  Google Scholar 

  40. Kumok, V.N., Kuleshova, O.M., and Karabin, L.A., Proizvedeniya rastvorimosti (Solubility Products), Belevantsev, V.I., Ed., Novosibirsk: Nauka, 1983.

    Google Scholar 

  41. Janossy, L., Theory and Practice of the Evaluation of Measurements, Budapest: Hungarian Acad. Sci., 1965.

    Google Scholar 

  42. Van der Zee, S.E.A.T.M. and Van Riemsdijk, W.H., NATO ASI Ser., Vol. 190: Interactions at the Soil Colloid–Soil Solution Interface, Bolt, G.H., De Boodt, M.F., Hayes, M.H.B., McBride, M.B., and De Strooper, E.B.A., Eds., Springer: Dordrecht, 1991.

    Google Scholar 

Download references

Funding

The work was carried out according to the plans of budget themes AAAA-A19-119031890028-0 and FUWF-2024-0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Polyakov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Radiokhimiya, No. 6, pp. 503–511, December, 2023 https://doi.org/10.31857/S0033831123060074

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioshin, A.A., Volkov, I.V. & Polyakov, E.V. Sorption of Sr(II) Ions with Tricalcium Phosphate in the Presence of Humic Acids. Radiochemistry 65, 661–671 (2023). https://doi.org/10.1134/S1066362223060073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362223060073

Keywords:

Navigation