Skip to main content
Log in

Comparative Analysis of Experimental Data on the Sublimation of Uranium Carbonitrides and Uranium–Zirconium Carbonitrides at High Temperatures

  • Published:
Radiochemistry Aims and scope

Abstract

The review is devoted to a comparison of new experimental data on the sublimation of uranium–zirconium carbonitrides with different contents of carbon, nitrogen, and oxygen impurities at high temperatures (1700–2300 K), we obtained in the past 2 years, with data of previous reported works on the sublimation of uranium carbonitrides, we and other authors prepared using mass spectrometry and some other methods of thermodynamic analysis. The main attention is paid to the consideration of the composition of the gas phase and the analytical dependences of the partial pressures of its components on temperature, as well as the chemical mechanism and heats of sublimation. The essential feature of the sublimation process of all materials based on uranium carbonitride (both pure and doped with zirconium) is its incongruent nature, due to the loss of nitrogen, which leads to a shift in their compositions towards the phase with higher carbon content. The chemical mechanisms of sublimation of carbonitrides of both types are considered, according to which oxygen impurities in these materials bring about the appearance of oxide components UO, UO2, and CO in the gas phase and additional release of nitrogen. The introduction of zirconium into uranium carbonitride and an increase in the carbon content in it lead to a decrease in the partial pressures of uranium monoxide and nitrogen, which increases the thermal stability of this innovative fuel material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Kotel’nikov, R.B., Bashlykov, S.N., Kashtanov, A.I., and Mel’nikova, T.S., Vysokotemperaturnoe yadernoe toplivo (High Temperature Nuclear Fuel), Moscow: Atomizdat, 1978.

    Google Scholar 

  2. Degal’tsev, Yu.G., Ponomarev-Stepnoi, N.N., and Kuznetsov, V.F., Povedenie vysokotemperaturnogo yadernogo topliva pri obluchenii (Behavior of High-Temperature Nuclear Fuel under Irradiation), Moscow: Energoatomizdat, 1987.

    Google Scholar 

  3. Dollezhal’, M.A., Atom. Energiya, 1977, vol. 43, pp. 432–438.

    Google Scholar 

  4. Kocevski, V., Rehn, D.A., Terricabras, A.J., van Veelen, A., Cooper, M.W.D., Paisner, S.W., Vogel, S.C., White, J.T., and Andersson, D.A., J. Nucl. Mater., 2023, vol. 576, ID 154241. https://doi.org/10.1016/j.jnucrmat.2023.154241

    Article  Google Scholar 

  5. Lindemer, T.B., J. Amer. Ceram. Soc., 1972, vol. 55, no. 12, pp. 601–606.

    Article  CAS  Google Scholar 

  6. Alekseev, S.V. and Zaitsev, V.A., Nitridnoe toplivo dlya yadernoi energetiki (Nitride Fuel for Nuclear Power), Moscow: Tekhnosfera, 2013.

    Google Scholar 

  7. Chernicov, A.S., Zaitsev, V.A., and Khromov, Yu.F., At. Energy, 2017, vol. 123, no. 2, pp. 96–104.

    Article  Google Scholar 

  8. Sano, T., Katsura, M., and Kai, H., Thermodynamics of Nuclear Materials, Vienna: IAEA, 1968, pp. 301–315.

    Google Scholar 

  9. Lyubimov, D.Yu., Bolotov, S.V., Kuraeva, E.M., Panov, A.S., Gedgovd, K.N., Bulatov, G.S., and Solov’ev, Yu.V., Materialovedenie, 1998, no. 12, pp. 13–17.

    Google Scholar 

  10. Henry, J.L. and Blickensdefer, R., J. Ceram. Soc., 1969, vol. 52, no. 10, pp. 534–539.

    Article  CAS  Google Scholar 

  11. Ikeda, Y., Tamaki, M., and Matsumoto, G., J. Nucl. Mater., 1976, vol. 59, no. 2, pp. 103–111.

    Article  CAS  Google Scholar 

  12. Prins, G., Gordfunke, E.H.P., and Depause, R., J. Nucl. Mater., 1980, vol. 89, pp. 221–228.

    Article  ADS  CAS  Google Scholar 

  13. Zagryazkin, V.N. and Bolotov, S.V., Vopr. atom. nauki i tekhniki. Ser.: Atomnoe materialovedenie (Question Atom. Science and Technology, Ser.: Atomic Materials Science), 1982, no. 3(14), pp. 16–30.

  14. Besmann, T., Shin, D. and Lindemer, T., J. Nucl. Mater., 2012, vol. 427, pp. 162–168.

    Article  ADS  CAS  Google Scholar 

  15. Srivastava, D., Garg, S.P., and Gosvami, G.L., J. Nucl. Mater., 1989, vol. 161, pp. 44–56.

    Article  ADS  CAS  Google Scholar 

  16. Bulatov, G.S., Gedgovd, K.N., Gulev, B.F., Makarenkov, V.I., Kuranov, K.V., and Glazunov, M.P., Materialovedenie, 2000, no. 11, pp. 28–33.

    Google Scholar 

  17. Bulatov, G.S., Gedgovd, K.N., Glazunov, M.P., and Yakunkina, T.V., Materialovedenie, 1998, no. 9, pp. 8–12.

    Google Scholar 

  18. Belov, A.N., Lopatin, S.I., Semenov, G.A., and Vinogradov, I.V., Izv. AN SSSR. Ser.: Neorg. Mater., 1984, vol. 20, no. 3, pp. 454–456.

    CAS  Google Scholar 

  19. Bulatov, G.S. and German, K.E., Nucl. Eng. Des./Fusion: Int. J. Devot. Therm., Mech., Mater., Struct., Des. Probl. Fusion Energy, 2022, vol. 3, no. 4, pp. 352–363. https://doi.org/10.3390/june3040022

    Article  Google Scholar 

  20. Lyubimov, D.Yu., Bulatov, G.S., and German, K.E., Radiochemistry, 2021, vol. 63, no. 1, pp. 16–20. https://doi.org/10.1134/S1066362221010033

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. S. Bulatov or K. E. German.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Radiokhimiya, No. 6, pp. 503–511, December, 2023 https://doi.org/10.31857/S0033831123060011

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulatov, G.S., German, K.E. Comparative Analysis of Experimental Data on the Sublimation of Uranium Carbonitrides and Uranium–Zirconium Carbonitrides at High Temperatures. Radiochemistry 65, 619–627 (2023). https://doi.org/10.1134/S1066362223060012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362223060012

Keywords:

Navigation