Skip to main content
Log in

Extraction of Actinides and Lanthanides from Nitric Acid Solutions with Diphosphine Dioxides in the Presence of an Ionic Liquid

  • Published:
Radiochemistry Aims and scope

Abstract

The effect of the ionic liquid—1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide—on the extraction of lanthanides(III), U(VI) and Th(IV) from nitric acid solutions with 1,2-bis(diphenylphosphinyl)-ethane I and 1,2-bis(diphenylphosphinyl)benzene II was studied. The stoichiometry of the extracted complexes was determined. A solution of dioxide II in dichloroethane extracts metal ions much more efficiently than a solution of dioxide I. It was established that in the presence of an ionic liquid in the organic phase, the efficiency of extraction of metal ions from nitrate solutions with solutions of dioxide I increases significantly, and that of dioxide II decreases. Thus, in the presence of an ionic liquid in the organic phase, dioxide II is significantly inferior to dioxide I in terms of the efficiency of Ln(III), U(VI) and Th(IV) extraction from nitric acid solutions, which is attributed to a significantly greater ability of dioxide II to extract HTf2N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Myasoedov, B.F., Kalmykov, S.N., Kulyako, Yu.M., and Vinokurov, S.E., Geochem. Int., 2016, vol. 54, no. 13, p. 1156. https://doi.org/10.1134/S0016702916130115

    Article  CAS  Google Scholar 

  2. Alyapyshev, M.Yu., Babain, V.A. and Ustynyuk, Yu.A., Russ. Chem. Rev., 2016, vol. 85, no. 9, p. 943. https://doi.org/10.1070/RCR4588

    Article  CAS  Google Scholar 

  3. Leoncini, A., Huskens, J., and Verboom, W., Chem. Soc. Rev., 2017, vol. 46, p. 7229. https://doi.org/10.1039/C7CS00574A

    Article  CAS  PubMed  Google Scholar 

  4. Wilson, A.M., Bailey, P.J., and Tasker, P.A., Chem. Soc. Rev., 2014, vol. 43, p. 123.

    Article  CAS  PubMed  Google Scholar 

  5. Werner, E.J. and Biros, S.M., Org. Chem. Front, 2019, vol. 6, p. 2067.

    Article  CAS  Google Scholar 

  6. Bhattacharyya, A. and Mohapatra, P.K., Radiochim. Acta, 2019, vol. 107, p. 931.

    Article  CAS  Google Scholar 

  7. Rozen, A.M. and Krupnov, B.V., Russ. Chem. Rev., 1996, vol. 65, no. 11, p. 973. https://doi.org/10.1070/RC1996v065n11ABEH000241

    Article  Google Scholar 

  8. Turanov, A.N.,Matveeva, A.G.,Kudryavtsev, I.Yu., Pasechnik, M.P., Matveev, S.V., Godovikova, M.I., Baulina, T.V., Karandashev, V.K., and Brel, V.K., Polyhedron, 2019, vol. 161, p. 276. https://doi.org/10.1016/j.poly.2019.01.036

    Article  CAS  Google Scholar 

  9. Berkman, Z.A., Bertina, L.E., Kabachnik, M.I., Kossykh, V.G., Medved’, T.Ya., Nesterova, N.P., Rozen, A.M., and Yudina, K.S., Radiokhimiya, 1975, vol. 17, no. 2, p. 210.

    CAS  Google Scholar 

  10. Rozen, A.M., Nikolotova, Z.I., Kartasheva, N.A., Medved’, T.Ya., Nesterova, N.P., Yudina, K.S., and Kabachnik, M.I., Radiokhimiya, 1976, vol. 18, no. 6, p. 846.

    Google Scholar 

  11. Turanov, A.N., Karandashev, V.K., Artyushin, O.I., Kostikova, G.V., Fedoseev, A.M., and Brel’, V.K., Russ. J. Gen. Chem., 2022, vol. 92, no. 8, p. 1289. https://doi.org/10.1134/S1070363222080163

    Article  Google Scholar 

  12. Riano, S., Foltova, S.S., and Binnemans, K., RSC Adv., 2020, vol. 10, p. 307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Raut, D.R., Sharma, S., Ghosh, S.K., and Mohapatra, P.K., Sep. Sci. Technol., 2017, vol. 52, p. 1430.

    Article  CAS  Google Scholar 

  14. Khodakarami, M. and Alagha, L., Sep. Purif. Technol., 2020, vol. 232, ID 115952.

    Article  CAS  Google Scholar 

  15. Murakami, S., Matsumiya, M., Yamada, T., and Tsunashima, K., Solvent Extr. Ion Exch., 2016, vol. 34, p. 172.

    Article  CAS  Google Scholar 

  16. Kolarik, Z., Solvent Extr. Ion Exch., 2013, vol. 31, p. 24. https://doi.org/10.1080/07366299.2012.700589

    Article  CAS  Google Scholar 

  17. Iqbal, M., Waheed, K., Rahat, S.B., Mehmood, T., and Lee, M.S., J. Radioanal. Nucl. Chem., 2020, vol. 325, p. 1.

    Article  CAS  Google Scholar 

  18. Atanassova, M., J. Mol. Liq., 2021, vol. 343, ID 117530. https://doi.org/10.1016/j.molliq.2021.117530

    Article  CAS  Google Scholar 

  19. Sun, T., Zhang, Y., Wu, Q., Chen, J., Xia, L., and Xu, C., Solvent Extr. Ion Exch., 2017, vol. 35, p. 408. https://doi.org/10.1080/07366299.2017.1379142

    Article  CAS  Google Scholar 

  20. Turanov, A.N., Karandashev, V.K., and Yarkevich, A.N., Radiochemistry, 2022, vol. 64, no. 2, p. 163. https://doi.org/10.1134/S1066362222020072

    Article  Google Scholar 

  21. Turanov, A.N., Karandashev, V.K., Sharova, E.V., Genkina, G.K., Artyushin, O.I., and Baimukhanova, A., Radiochim. Acta, 2018, vol. 106, p. 355.

    Article  CAS  Google Scholar 

  22. Pribylova, G.A., Smirnov, I.V., and Novikov, A.P., Radiochemistry, 2012, vol. 54, no. 5, p. 435.

    Article  Google Scholar 

  23. Pribilova, G., Smirnov, I., and Novikov, A., J. Radioanal. Nucl. Chem., 2012, vol. 295, p. 83.

    Article  Google Scholar 

  24. Gan, Q., Cai, Y., Fu, K., Yuan, L., and Feng, W., Radiochim. Acta, 2020, vol. 108, p. 239. https://doi.org/10.1515/ract-2019-3147

    Article  CAS  Google Scholar 

  25. Tsvetkov, E.N., Bondarenko, N.A., Malakhova, I.G., and Kabachnik, M.I., Synthesis, 1986, no. 3, p. 198. https://doi.org/10.1055/s-1986-31510

    Article  Google Scholar 

  26. Matveeva, A.G., Artyushin, O.I., Pasechnik, M.P., Stash, A.I., Vologzhanina, A.V., Matveev, S.V., Godovikov, I.A., Aysin, R.R., Moiseeva, A.A., Turanov, A.N., Karandashev, V.K., and Brel, V.K., Polyhedron, 2021, vol. 198, ID 115085. https://doi.org/10.1016/j.poly.2021.115085

    Article  CAS  Google Scholar 

  27. Gaillard, C., Boltoeva, M., Billard, I., Georg, S., Mazan, V., Ouadi, A., Ternova, D., and Henning, C., Chem. Phys. Chem., 2015, vol. 16, p. 2653. https://doi.org/10.1002/cphc.201500283

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was carried out within the framework of the State Assignment (2023) of the Osipyan Institute of Solid State Physics, Russian Academy of Sciences, Institute of Solid State Physics, Russian Academy of Sciences, and Nesmeyanov Institute of Organoelement Compounds. The synthesis of the starting compounds was carried out with financial support from the Russian Science Foundation (project 20-13-00329).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Brel’.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Radiokhimiya, No. 5, pp. 410–417, October, 2023 https://doi.org/10.31857/S0033831123050027

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turanov, A.N., Karandashev, V.K., Artyushin, O.I. et al. Extraction of Actinides and Lanthanides from Nitric Acid Solutions with Diphosphine Dioxides in the Presence of an Ionic Liquid. Radiochemistry 65, 530–537 (2023). https://doi.org/10.1134/S1066362223050028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362223050028

Keywords:

Navigation