Skip to main content
Log in

Natural Radioactivity Levels (238U, 232Th, 40K) and Their Geochemical Characteristics of Granitic Rocks from Nuweibi Area, Egyptian Nubian Shield

  • Published:
Radiochemistry Aims and scope

Abstract

The Nuweibi area (7.5 km2) is located towards NW Marsa Alam City, central Egyptian Nubian Shield. It constitutes ophiolite assemblages (serpentinites, metagabbros), Tuffaceous metasediments, granodiorite–tonalite, and Late Ediacaran albite granite. The present study mainly focuses on determination of the concentrations of specific elements and their interrelationships to 238U, 232Th, and 40K for the granitic rocks. The radiometric measurements have been performed using a high-purity germanium (HPGe) detector and a portable RS-230 γ-ray spectrometer in combination with chemical analysis using ICP-MS. The radionuclide values measured with a ground gamma-ray detector are more than twice those recorded using both HPGe spectroscopic and chemical analysis methods. On the other hand, the chemical data given by many correlations between U, Th, and K as well as selected major, trace, and rare earth elements suggest the occurrence of the magmatic process followed by Na-metasomatic albitization in albite granite. This process caused redistribution and remobilization of U, as follows the facts that eTh/eU exceeds 3 and the average eTh/eU ratio of albite granites exceeds the Clark’s value (3.5). On the other hand, the higher eTh contents of the albite granites reflect additional contribution from Th-bearing minerals, and in most sampling sites the 232Th/226Ra activity ratios are higher than the natural equilibrium ratio, 1.1, indicating possible enrichment process of these radionuclides as a result of alkali metasomatism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Finch, R. and Murakami, T., Rev. Mineral., 1999, vol. 38, pp. 91–179.

    CAS  Google Scholar 

  2. Heikal, M.Th.S., El-Dousky, B.T., Ghoneim, M.F., and Sherif, M.I., Arab J. Geosci., 2013, vol. 6, pp. 3229–3239.

    Article  CAS  Google Scholar 

  3. Heikal, M.Th.S. and Top, G., J. Afr. Earth Sci., 2018, vol. 146, pp. 191–208. https://doi.org/10.1016/j.jafrearsci.2018.01.005

    Article  CAS  Google Scholar 

  4. Heikal, M.Th.S., Abdellah, W.M., Kamar, M.S., Ibrahim, M.O., and Abd El Monsef, M., Arab J. Nucl. Sci. Appl., 2022, vol. 55, no. 4, pp. 79–91.

    Google Scholar 

  5. Heikal, M.Th.S., Abu El Ela, M.M., Shreif, A.S., Azer, M.K., and Masoud, A.E., Arab J. Nucl. Sci. Appl., 2022, vol. 55, no. 4, pp. 109–131.

    Google Scholar 

  6. Erkül, S.T., Ozmen, S.F., Erkül, F., and Boztosun, I., Turk. J. Earth Sci., 2016, vol. 25, pp. 242–255.

    Article  Google Scholar 

  7. El-Afifi, E.M., Shahr El-Din, A.M., Aglan, R.F.E.H., Borai, E.H., and Abo-Aly, M.M., Regul. Toxicol. Pharmacol., 2017, vol. 89, pp. 215–223.

    Article  CAS  PubMed  Google Scholar 

  8. Heikal, M.Th.S., Gomaa, S.R., Abd El Monsef, M., Taha, A., Top, G., Mahmoud, K.R., and El-Mansi, M.M., Arab J. Nucl. Sci. Appl., 2018, vol. 51, no. 4, pp. 143–167. https://doi.org/10.21608/ajnsa.2018.3686.1086

    Article  Google Scholar 

  9. Langmuir, D. and Herman, J.S., Geochim. Cosmochim. Acta, 1980, vol. 44, pp. 1753–1766.

    Article  CAS  Google Scholar 

  10. Rosholt, J., Uranium-Series Disequilibrium, Ivanovich, M. and Harmon, R.S., Eds., Oxford: Oxford Science, 1982, pp. 167–180.

    Google Scholar 

  11. Scott, M.R., Uranium-Series Disequilibrium, Ivanovich, M. and Harmon, R.S., Eds., Oxford: Oxford Science, 1982, pp. 180–201.

    Google Scholar 

  12. Osmond, J.K. and Ivanovich, M., Uranium-Series Disequilibrium, Ivanovich, M. and Harmon, R.S., Eds., Oxford: Oxford Science, 1992, 2nd ed., pp. 259–289.

    Google Scholar 

  13. Chabaux, F., Riotte, J., and Dequincey, O., Rev. Miner. Geochem., 2003, vol. 52, pp. 533–576.

    Article  CAS  Google Scholar 

  14. Heikal, M.Th.S., Mahmoud, K.R., El-Sobky, T., and Top, G., Int. J. Environ. Water, 2016, vol. 5, no. 3, pp. 1–12.

    Google Scholar 

  15. Hamdy, M.M., Waheeb, A.G., Aly, S.M., and Farag, N.M., J. Afr. Earth Sci., 2017, vol. 136, pp. 282–304.

    Article  CAS  Google Scholar 

  16. Kamar, M.S., Shalan, A.S., Youssef, W.M., Hussein, A.E.M., Khawassek, Y.M., and Taha, M.H., Radiochemistry, 2022, vol. 64, no. 2, pp. 244–256.

    Article  CAS  Google Scholar 

  17. Helba, H., Trumbull, R.B., Morteani, G., Khalil, S.O., and Arslan, A., Miner. Depos., 1997, vol. 32, pp. 164–179.

    Article  CAS  Google Scholar 

  18. Emam, A., Zoheir, B., Radwan, A.M., Lehmann, B., Zhang, R., Fawzy, S., and Nolte, N., Arab. J. Geosci., 2018, vol. 11, p. 736

    Article  Google Scholar 

  19. Azer, M.K., Abd el Fadil, K.M., and Ramadan, A.A., J. Geol., 2019, vol. 127. https://doi.org/10.1086/705328

    Article  Google Scholar 

  20. Rudnick, R.L. and Gao, S., The composition of the continental crust, Treatise on Geochemistry, vol. 3: The Crust, Holland, H.D. and Turekian, K.K., Eds., 2003, pp. 1–64.

    Google Scholar 

  21. ICRP Publication 65, Ann. ICRP, 1994, vol. 23, pp. 1–48.

  22. Malczewski, D., Taper, L., and Dorda, J., J. Environ. Radioact., 2004, vol. 73, pp. 233–245.

    Article  CAS  PubMed  Google Scholar 

  23. El-Afandy, A.H., El-Feky, M.G., Taha, S.H., El Minyawi, S.M., and Sallam, H.A., Greener J. Geol. Earth Sci., 2016, vol. 4, no. 3, pp. 56–69.

    Article  Google Scholar 

  24. OECD Publication, Paris, France: OECD, 1979.

  25. Beretka, J. and Mathew, P.J., Health Phys., 1985, vol. 48, pp. 87–95.

    Article  CAS  PubMed  Google Scholar 

  26. UNSCEAR Publication, New York: UN, 2008.

  27. ICRP Publication 126, Ann ICRP, 2014, vol. 43.

  28. Papadopoulos, A., Şafak Altunkaynak, S., Koroneos, A., Alp Ünal, A. and Kamaci, O., Miner. Petrol., 2017. https://doi.org/10.1007/s00710-017-0492-4

    Article  Google Scholar 

  29. Said, A.F., Salam, A.M., Hassan, S.F. and Mohamed, W.S., in Tenth Radiation Physics & Protection Conf., Nasr City, Cairo, Egypt, Nov. 27–30, 2010, pp. 145–159.

    Google Scholar 

  30. Örgün, Y., Altınsoy, N., Sahin, S. Y., Gungoroc, Y., Gültekin, A.H., Karahan, G., and Karacik, Z., Appl. Radiat. Isot., 2007, vol. 65, pp. 739–747.

    Article  PubMed  Google Scholar 

  31. Iovine, G., Guagliardi, I., Brunol, C., Greco, R., Tallarico, A., Falcone, G., Lucà, F., and Buttafuoco, G., Nat. Hazards, 2017. https://doi.org/10.1007/s11069-017-2839-x

    Article  Google Scholar 

  32. Clarke, S.P., Peterman, Z.E., and Heier, K.S., Geol. Soc. Am. Memoir, 1966, vol. 97, pp. 521–541.

    Article  Google Scholar 

  33. Roger, J.J.W. and Adams, J.A.S., Handbook of Geochemistry, Wedepohl, K.H., Ed., Berlin: Springer, 1969, vol. 11, p. 13

    Google Scholar 

  34. Hansink, J.D., in Proc. IAEA Int. Symp. on Exploration of Uranium Ore Deposits, Vienna: IAEA, March 29–April 2, 1976, pp. 683–693.

  35. Mercadier, J., Cuney, M., Lach, P., Boiron, M.C., Bonhoure, J., Richard, A., Leisen, M., and Kister, P., Terra Nova, 2011, vol. 23, pp. 264–269. https://doi.org/10.1111/j.1365-3121.2011.01008.x

    Article  CAS  Google Scholar 

  36. The Rare Earth Elements: Fundamentals and Applications, Wiley, 2012, p. 606.

    Google Scholar 

  37. Jha, A.R., Rare Earth Materials. Properties and Applications, CRC, 2014, p. 329.

    Book  Google Scholar 

  38. Holden, N.E., Handbook of Chemistry and Physics, Lide, D., Ed., CRC, 1997, pp. 11–39.

    Google Scholar 

  39. Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., and Essling, A.M., Phys. Rev. C, 1971, vol. 4, pp. 1889–1906.

    Article  Google Scholar 

  40. Collins, G.L., Rep. Natl. Centre Sci. Educ., 1999, vol. 19, pp. 20–28.

    Google Scholar 

  41. Frimmel, H.E., Schedel, S., and Bratz, H., Appl. Geochem., 2014, vol. 48, pp. 104–121.

    Article  CAS  Google Scholar 

  42. Heikal, M.Th.S., REEs and RM-Bearing Minerals and Their Economic Aspects, Lambert Academic, 2014.

    Google Scholar 

  43. Manning, D.A.C., Contrib. Miner. Petrol., 1981, vol. 76, pp. 257–262.

    Article  Google Scholar 

  44. Kyser, K. and Cuney, M., Short Course Ser. 39, Mineralogical Association of Canada, 2008.

  45. Cuney, M., Econ. Geol., 2010, vol. 105, pp. 553–569.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kamar.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heikal, M.T.S., Kamar, M.S., Azer, M.K. et al. Natural Radioactivity Levels (238U, 232Th, 40K) and Their Geochemical Characteristics of Granitic Rocks from Nuweibi Area, Egyptian Nubian Shield. Radiochemistry 65, 497–509 (2023). https://doi.org/10.1134/S1066362223040124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362223040124

Keywords:

Navigation