Skip to main content
Log in

Speciation of 210Po and 210Pb in Radioactively Contaminated Soils

  • Published:
Radiochemistry Aims and scope

Abstract

Differences in the migration ability of 210Po and 210Pb were established by the chemical fractionation of samples of radium-contaminated podzolic and alluvial-soddy soils, therewith the nature of differences did not depend on the type of soil. In the water-soluble fractions, as well as in the case of 210Po, in the exchangeable (1 M CH3COONH4, pH 7) and carbonate (1 M CH3COONH4, pH 5) fractions, the amount of radionuclides was insignificant (less than 1% of their total specific activity in samples). The highest proportion of 210Po was found in the extracts Fe and Mn oxides and hydroxides (0.1 M NH2OH·HCl in 25% CH3COOH), organic matter (30% H2O2 + HNO3 up to pH 2), and amorphous silicates (0.2 M NaOH). The 210Pb isotope was detected in significant amounts in all migrating speciations, except for the water-soluble one. Most of all, it was found in the organic matter extracts (up to 19.7% of the total content in soils). In the insoluble residue fractions, the proportion of 210Po was 72.0 and 82.8%, that of 210Pb was 50.0 and 76.4% of their specific activity in podzolic and alluvial-soddy soils, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Puchkova, E.V. and Bogdanova, O.G., Radiochemistry, 2015, vol. 57, no. 2, pp. 183–191.

    Article  Google Scholar 

  2. Venunatan, N. and Naraiana, I., Radiochemistry, 2016, vol. 58, no. 5, pp. 478–480.

    Google Scholar 

  3. Persson, B.R.R. and Holm, E., J. Environ. Radioact., 2011, vol. 102, pp. 420–429. https://doi.org/10.1016/j.jenvrad.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  4. Sanzharova, N.I., Fesenko, S.V., Shubina, O.A., Isamov, N.N., and Sanzharov, A.I., Radiatsionnaya biologiya. Radioekologiya, 2009, vol. 49, no. 3, pp. 268–276.

    CAS  Google Scholar 

  5. Bakhur, A.E., Manuilova, L.I., and Ovsyannikova, T.M., ANRI, 2009, no. 1, pp. 29–40.

    Google Scholar 

  6. Jia, G., Appl. Radiat. Isot., 2018, vol. 137, pp. 12–17. https://doi.org/10.1016/j.apradiso.2018.02.019

    Article  CAS  PubMed  Google Scholar 

  7. Noskova, L.M. and Shuktomova, I.I., Ekologiya, 2009, no. 1, pp. 73–76. https://doi.org/10.1134/S1067413610050073

    Article  CAS  Google Scholar 

  8. Rachkova, N.G. and Shaposhnikova, L.M., Geokhimiya, 2020, no. 6, pp. 599–608. https://doi.org/10.31857/S0016752520050106

    Article  Google Scholar 

  9. Chao, J.H. and Chuang, C.Y., Appl. Radiat. Isot., 2011, vol. 69, pp. 261–267.

    Article  CAS  PubMed  Google Scholar 

  10. Heltai, G., Gyori, Z., Fekete, I., Halasz, G., Kovacs, K., Takacs, A., Boros, N., and Horvath, M., Microchem. J., 2018, vol. 136, pp. 85–93.

    Article  CAS  Google Scholar 

  11. Taskaev, A.I. and Kichigin, A.I., Vodnyi promysel: proizvodstvo radiya v Respublike Komi (Aquatic Industry: Radium Production in the Komi Republic), Syktyvkar, 2002.

  12. Tessier, A., Campbell, P.G.C., and Bisson, M., Anal. Chem., 1979, vol. 51, no. 7, pp. 844–851.

    Article  CAS  Google Scholar 

  13. Klemt, E., Spasova, Y., and Zibold, G., Abstracts of Papers, Environmental Radioactivity in the Arctic and Antarctic: Proc. 15th Conf. St. Petersburg, St. Petersburg, 2002.

  14. Adamova, L.I. and Taskaev, A.I., Migratsiya i biologicheskoe deistvie estestvennykh radionuklidov v usloviyakh severnykh biogeotsenozov (Migration and Biological Action of Natural Radionuclides in Conditions of Northern Biogeocenoses), Syktyvkar, 1980.

  15. Blanchard, R.L., Anal. Chem., 1966, vol. 38, pp. 189–192.

    Article  Google Scholar 

  16. Skorobogatov, G.A., Timofeev, S.A., Kuzin, V.I., Kaduka, M.V., Shvydko, N.S., and Goncharova, Yu.N., Radiochemistry, 2010, vol. 52, no. 5, pp. 458–463.

    Article  Google Scholar 

  17. Bekman, I.N., Radiokhimiya, vol. 2: Radioaktivnye elementy: Ucheb. posobie (Radiochemistry, vol. 2: Radioactive Elements: Proc. Allowance), Moscow: OntoPrint, 2014.

    Google Scholar 

  18. Vaaramaa, K., Aro, L., Solatie, D., and Lehto, J., Sci. Total Environ., 2010, vol. 408, pp. 6165–6171.

    Article  CAS  PubMed  Google Scholar 

  19. Bister, S., Birkhan, J., Lüllau, T., Bunka, M., Solle, A., Stieghorst, C., Riebe, B., Michel, R., and Walther, C., J. Environ. Radioact., 2015, vol. 144, pp. 21–31.

    Article  CAS  PubMed  Google Scholar 

  20. Brown, J.E., Gjelsvik, R., Roos, P., Kalas, J.A., Outola, I., and Holm, E., J. Environ. Radioact., 2011, vol. 102, pp. 430–437. https://doi.org/10.1016/j.jenvrad.2010.06.016

    Article  CAS  PubMed  Google Scholar 

  21. Karunakara, N., Avadhani, D.N., Mahesh, H.M., Somashekarappa, H.M., Narayana, Y., and Siddappa, K., J. Environ. Radioact., 2000, vol. 51, pp. 349–362.

    Article  CAS  Google Scholar 

  22. Aleksakhin, R.M., Arkhipov, N.P., Barkhudarov, R.M., Vasilenko, I.Ya., Drichko, V.F., Ivanov, Yu.A., Maslov, V.I., Maslova, K.I., Nikiforov, V.S., Polikarpov, G.G., Popova, O.N., Sirotkin, A.N., Taskaev, A.I., Testov, B.V., Titaeva, N.A., and Fevraleva, L.T., Tyazhelye estestvennye radionuklidy v biosfere: Migratsiya i biologicheskoe deistvie na populyatsii i biogeotsenozy (Heavy Natural Radionuclides in the Biosphere: Migration and Biological Effects on Populations and Biogeocenoses), Aleksakhin, R.M., Ed., Moscow: Nauka, 1990.

    Google Scholar 

  23. Torshin, S.P. and Smolina, G.A., Biogeokhimiya radionuklidov (Biogeochemistry of Radionuclides), Moscow: INFRA-Moskva, 2016.

    Google Scholar 

  24. Virtanen, S., Vaaramaa, K., and Lehto, J., Appl. Geochem., 2013, vol. 38, pp. 1–9. https://doi.org/10.1016/j.apgeochem.2013.08.004

    Article  CAS  Google Scholar 

  25. Al-Masri, M.S., Amin, Y., Khalily, H., Al-Masri, W., and Al-Khateeb, Y., J. Environ. Radioact., 2021, vols. 229–230, ID 106538.

    Article  PubMed  Google Scholar 

  26. Semenishchev, V.S., Tomashova, L.A., and Titova, S.M., J. Radioanal. Nucl. Chem., 2021, vol. 327, no. 2, pp. 997–1003. https://doi.org/10.1016/j.apgeochem.2013.08.004

    Article  CAS  Google Scholar 

  27. Le, T.-H.-H., Michel, H., and Champion, J., J. Environ. Radioact., 2019, vols. 199–200, pp. 1–6.

    Article  PubMed  Google Scholar 

Download references

Funding

The studies were carried out within the framework of the state order IB FRC Komi Scientific Center, Ural Branch, Russian Academy of Sciences no. 122040600024–5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Shaposhnikova.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Radiokhimiya, No. 1, pp. 93–100, December, 2023 https://doi.org/10.31857/S0033831123010136

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaposhnikova, L.M., Rachkova, N.G. Speciation of 210Po and 210Pb in Radioactively Contaminated Soils. Radiochemistry 65, 122–129 (2023). https://doi.org/10.1134/S1066362223010174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362223010174

Keywords:

Navigation