Skip to main content
Log in

Statics and Kinetics of Sorption of La(III), Ce(III), U(VI) Ions by a Nanostructured Composite Al2O3||C

  • Published:
Radiochemistry Aims and scope

Abstract

The sorption properties of the new Al2O3||C composite were studied. A feature of its macroscopic morphology and structure is the amorphous state of alumina generated in an inert atmosphere in chemical contact with the graphene-like carbon surface. This feature is shown to determine the high chemical activity of the alumina-based composite (AC) in an aqueous medium, which is comparable with the activity of α-Al2O3 or gibbsite Al(OH)3. The sorption properties of the obtained composite towards La(III), Ce(III), U(VI) ions are described within the surface complexation model. The agreement between the values of the first hydrolysis constant of La(III), Ce(III), and U(VI) cations calculated from the sorption experiment and published data proves the adequacy of the chosen sorption model. It follows from simulation that the sorption activity of the composite is caused by a higher constant (K1a) of the acid dissociation of –ОН2+surf groups (pK1a = 3.9) of the amorphous AC surface and the partial distribution coefficients of individual hydroxo complexes of the studied cations. Sorption of ions by the composite in a solution of humic acids (HA) is completely determined by the parallel reaction of competitive sorption of protonated HA anions by the amorphous AC surface in the HA concentration range of 10–200 mg/L. Al2O3||C is an effective sorbent for trace amounts of La(III), Ce(III), U(VI), their chemical analogs, and humic acid in natural and working solutions with a low salt background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Raya, P.Z. and Shipley, H.J., RSC Adv., 2015, vol. 5, p. 9885.

    Google Scholar 

  2. Senyavin, M.M., Ionnyi obmen (Ion Exchange), Moscow: Nauka, 1981.

    Google Scholar 

  3. Yang, R.T., Adsorbents: Fundamentals and Applications. Chapter 6: Silica Gel, MCM, and Activated Alumina, New York: Wiley, 2003.

    Google Scholar 

  4. Kumar, E., Bhatnagar, A., Hogland, W., Marques, M., and Sillanpää, M., Chem. Eng. J., 2014, vol. 241, p. 443.

    Article  CAS  Google Scholar 

  5. Kulemin, V.V., Krasavina, E.P., Gorbacheva, M.P., Rumer, I.A., Bessonov, A.A., Krapukhin, V.B., and Kulyukhin, S.A., Radiochemistry, 2021, vol. 63, no. 5, p. 651.

    Article  CAS  Google Scholar 

  6. Islam, Md.A., Morton, D.W., Johnson, B.B., Prama-nik, B.K., Mainali, B., and Angove, M.J., J. Environ. Chem. Eng., 2018, vol. 6, p. 6853.

    Article  CAS  Google Scholar 

  7. Poursani, A.S., Nilchi, A., Hassani, A.H., Shariat, M., and Nouri, J., Int. J. Environ. Sci. Technol., 2015, vol. 12, p. 2003.

    Article  Google Scholar 

  8. Tabesh, S., Davar, F., and Loghman-Estarki, M.R., J. Alloys Compd., 2018, vol. 730, p. 441.

    Article  CAS  Google Scholar 

  9. Yu, J., Bai, H., Wang, J., Li, Z., Jiao, C., Liu, Q., Zhanga, M., and Liu, L., New J. Chem., 2013, vol. 37, p. 366.

    Article  CAS  Google Scholar 

  10. Huang, S., Pang, H., Li, L., Jiang, S., Wen, T., Zhuang, L., Hu, B., and Wang, X., Chem. Eng. J., 2018, vol. 353, p. 157.

    Article  CAS  Google Scholar 

  11. Figurovskii, A.N., Ocherk razvitiya russkogo protivogaza vo vremya imperialisticheskoi voiny 1914–1918 gg. (Essay on the Development of the Russian Gas Mask during the Imperialist War of 1914–1918), Moscow: Izd Akad Nauk SSSR, 1942.

    Google Scholar 

  12. Wei, X., Huang, T., Yang, J.H., Zhang, N., Wang, Y., and Zhou, Z.W., J. Hazard. Mater., 2017, vol. 335, p. 28.

    Article  CAS  PubMed  Google Scholar 

  13. Erto, A., Giraldo, L., Lancia, A., and Moreno-Pirajan, J.C., Water Air Soil Pollut., 2013, vol. 224, no. 1531, p. 1.

    Article  CAS  Google Scholar 

  14. Abdel Salam, O.E., Reiad, N.A., and ElShafei, M.M., J. Adv. Res., 2011, vol. 2, p. 297.

    Article  Google Scholar 

  15. Salam, M.A., Int. J. Environ. Sci. Technol., 2013, vol. 10, p. 677.

    Article  Google Scholar 

  16. Yamaguchi, D., Furukawa, K., Takasuga, M., and Watanabe, K., Sci. Rep., 2014, vol. 4, no. 6053, p. 1.

    Google Scholar 

  17. Krasil’nikov, V.N., Linnikov, O.D., Gyrdasova, O.I., Rodina, I.V., Tyutyunnik, A.P., Baklanova, I.V., Polyakov, E.V., Khlebnikov, N.A., and Tarakina, N.V., Solid State Sci., 2020, vol. 108, ID 106429.

    Article  Google Scholar 

  18. Yang, W., Tang, Q., Wei, J., Ran, Y., Chai, L., and Wang, H., Appl. Surf. Sci., 2016, vol. 396, p. 215.

    Article  Google Scholar 

  19. Chen, H., Luo, J., Wang, X., Liang, X., Zhao, Y., Yang, C., Baikenov, M.I., and Su, X., Micropor. Mesopor. Mater., 2018, vol. 255, p. 69.

    Article  CAS  Google Scholar 

  20. Yao, W., Wang, X., Liang, Y., Yu, S., Gu, P., Sun, Y., Xu, C., Chen, J., Hayat, T., Alsaedi, A., and Wang, X., Chem. Eng., 2018, vol. 332, p. 775.

    Article  CAS  Google Scholar 

  21. Krasil’nikov, V.N., Baklanova, I.V., Polyakov, E.V., Volkov, I.V., Khlebnikov, A.N., Tyutyunnik, A.P., and Tarakina, N.V., Inorg. Chem. Commun., 2022, vol. 138, ID 109313.

    Article  Google Scholar 

  22. Polyakov, E.V., Krasil’nikov, V.N., and Volkov, I.V., Patent RF no. 2774876. Prioritet ot 12.08.2021. Opublikovano 23.06.2022. Byul, no. 18.

  23. Kolarik, Z., Coll. Czech. Chem. Commun., 1962, vol. 27, no. 4, p. 938.

    Article  CAS  Google Scholar 

  24. Kolarik, Z. and Szlaur, J., Coll. Czech. Chem. Commun., 1963, vol. 28, p. 2818.

    Article  CAS  Google Scholar 

  25. Egorov, Yu.V., Statika sorbtsii mikrokomponentov oksigidratami (Statics of Sorption of Microcomponents by Oxyhydrates), Moscow: Atomizdat, 1975.

    Google Scholar 

  26. Adsorption from Aqueous Solutions: Proc. Symp. Held March 24–27, 1980, as a Satellite Symp. to the Meet. of the American Chemical Society Division of Colloid and Surface Chemistry, Houston, Texas, P.D. Tewari, Ed., New York: Plenum, 1980.

  27. Bolt, G.H., De Beodt, M.F., Hayes, M.H.B., and McBride, M.B., Interactions at the Soil Colloid–Soil Solution Interface, De Beodt, M.F., Hayes, M.H.B., and McBride, M.B., Eds., Ghent: Springer, 1991.

    Book  Google Scholar 

  28. Kupcik, T., Rabung, Th., Lützenkirchen, J., Finck, N., Geckeis, H., and Fanghänel Th., J. Colloid Interface Sci., 2016, vol. 461, p. 215.

    Article  CAS  PubMed  Google Scholar 

  29. Davis, J.A., James, R.O., and Leckie, J.O., J. Colloid Interface Sci., 1978, vol. 63, no. 3, p. 480.

    Article  CAS  Google Scholar 

  30. Davis, J.A. and Leckie, J.O., J. Colloid Interface Sci., 1978, vol. 67, no. 1, p. 90.

    Article  CAS  Google Scholar 

  31. Kasprzyk-Hordern, B., Adv. Colloid Interface Sci., 2004, vol. 110, p. 19.

    Article  CAS  PubMed  Google Scholar 

  32. Yoshida, T., Yamaguci, T., Iida, Y., and Nakayama, Sh., J. Nucl. Sci. Technol., 2003, vol. 40, no. 9, p. 672.

    Article  CAS  Google Scholar 

  33. Moskaleva, L.V., Nasluzov, V.A., and Rosch, N., Langmuir, 2006, vol. 22, p. 2141.

    Article  CAS  PubMed  Google Scholar 

  34. Tan, X., Ren, X., Li, J., and Wang, X., RSC Adv., 2013, vol. 3, no. 42, p. 19551.

    Article  CAS  Google Scholar 

  35. Virtanen, S., Bok, F., Ikeda-Ohno, A., Rossberg, A., Lützenkirchen, J., Rabung, T., Lehto, J., and Huittinen, N., J. Colloid Interface Sci., 2016, vol. 483, p. 334.

    Article  CAS  PubMed  Google Scholar 

  36. Virtanen, S., Meriläinen, S., Eibl, M., Rabung, T., Lehto, J., and Huittinen, N., Appl. Geochem., 2018, vol. 92, p. 71.

    Article  CAS  Google Scholar 

  37. Sankararamakrishnan, N., Jaiswal, M., and Verma, N., Chem. Eng. J., 2014, vol. 235, p. 1.

    Article  CAS  Google Scholar 

  38. Zhang, L., Li, Y., Guo, H., Zhang, H., Zhang, N., Hayat, T., and Sun, Y., Environ. Pollut., 2019, vol. 248, p. 332.

    Article  CAS  PubMed  Google Scholar 

  39. Humic Acid, Technical. CAS no. 1415-93-6. Aldrich. Material no. SKU 53680-10G.

  40. Kumok, V.N., Kuleshova, O.M., and Karabin, L.A., Ravnovesiya rastvorimosti (Solubility Equilibria), Novosibirsk: Nauka, 1983.

    Google Scholar 

  41. Kotrly, S. and Sucha, L., Handbook of Chemical Equilibria in Analytical Chemistry, New York: Horwood, 1985.

    Google Scholar 

  42. Polyakov, E.V., Reaktsii ionno-kolloidnykh form mikrokomponentov i radionuklidov v vodnykh rastvorakh (Reactions of Ionic-Colloidal Forms of Microcomponents and Radionuclides in Aqueous Solutions), Egorova, Yu.V., Ed., Ekaterinburg: UrO RAN, 2003.

    Google Scholar 

  43. Roelofs, F. and Vogelsberger, W., J. Colloid Interface Sci., 2006, vol. 303, p. 450.

    Article  CAS  PubMed  Google Scholar 

  44. Ramirez-Garcia, J.J., Solache-Rios, M., Jimenez-Reyes, M., and Rojas-Hernandez, A., J. Solution Chem., 2003, vol. 32, p. 879.

    Article  CAS  Google Scholar 

  45. Sis, H. and Birinci, M., Colloids Surf. A: Physicochem. Eng. Aspects, 2009, vol. 341, p. 60.

    Article  CAS  Google Scholar 

  46. Wu, S.F., Yanagisawa, K., and Nishizawa, T., Carbon, 2001, vol. 39, p. 1537.

    Article  CAS  Google Scholar 

  47. Huang, Sh., Pang, H., Li, L., Jiang, Sh., and Wang, X., Chem. Eng.J., 2018, vol. 3531, p. 157.

    Article  Google Scholar 

  48. Marmier, N., Dumonceau, J., and Fromage, F., J. Contam. Hydrol., 1997, vol. 26, p. 159.

    Article  CAS  Google Scholar 

  49. Tan, X., Ren, X., Li, J., and Wang, X., RSC Adv., 2013, vol. 3, p. 19551.

    Article  CAS  Google Scholar 

  50. Janossy, L., Theory and Practice of the Evaluation of Measurements, Budapest: Oxford Univ. Press, 1965.

    Google Scholar 

  51. Polyakov, E.V., Radiochemistry, 2018, vol. 60, p. 177.

    Article  CAS  Google Scholar 

  52. Ramirez-Garcia, J.J., Solache-Rios, M., Jimenez-Reyes, M., and Rojas-Hernandez, A., J. Solution Chem., 2003, vol. 32, no. 10, p. 879.

    Article  CAS  Google Scholar 

  53. Bentouhami, E., Bouet, G.M., Meullemeestre, J., Vierling, F., and Khan, M.A., C. R. Chim., 2004, vol. 7, no. 5, p. 537.

    Article  CAS  Google Scholar 

  54. Polyakov, E.V., Egorov, Yu.V., and Ilves, G.N., Czech. J. Phys., 1999, vol. 49. Suppl. 1, p. 773.

    Article  CAS  Google Scholar 

  55. Vasilevskii, V.A., Betenekov, N.D., Egorov, Yu.V., and Denisova, T.A., Radiokhimiya, 1984, vol. 26, no. 4, p. 432.

    Google Scholar 

  56. Starik, I.E., Osnovy radiokhimii (Fundamentals of Radiochemistry), Leningrad: Nauka, 1964.

    Google Scholar 

  57. Benes, P. and Majer, V., Trace Chemistry of Aqueous Solution, Prague: Academia, 1980.

    Google Scholar 

  58. Whelton, A.J. and Dietrich, A.M., Polym. Degrad. Stab., 2009, vol. 94, p. 1163.

    Article  CAS  Google Scholar 

  59. Karlsson, K., Smith, G.D., and Gedde, U.W., Polym. Eng. Sci., 1992, vol. 32, no. 10, p. 649.

    Article  CAS  Google Scholar 

  60. Terada, S., Ueda, N., Kondo, K., and Takemoto, K., Kobunshi Kagaku, 1972, vol. 29, no. 327, p. 500.

    Article  CAS  Google Scholar 

  61. Ogiwara, Y. and Kubota, N., J. Polym. Sci. Part A1, 1969.Vol. 7, no. 8, pp. 2087–2095.

    Article  Google Scholar 

  62. Wang, X., Li, J., Dai, S., Hayat, T., Alsaedi, A., and Wang, X., Chem. Eng.J., 2015, vol. 273, p. 588.

    Article  CAS  Google Scholar 

  63. Wang, X., Chen, Zh., Tan, X., Hayat, T., Ahmad, B., Dai, S., and Wang, X., Chem. Eng. J., 2016, vol. 287, p. 313.

    Article  CAS  Google Scholar 

  64. Zhiwei, N., Qiaohui, F., Wenhua, W., Junzheng, X., Lei, Ch., and Wangsuo, W., Appl. Radiat. Isot., 2009, vol. 67, p. 1582.

    Article  Google Scholar 

  65. Volkov, I.V. and Polyakov, E.V., Radiochemistry, 2020, vol. 62, p. 141.

    Article  CAS  Google Scholar 

  66. Polyakov, E.V., Radiochemistry, 2007, vol. 49, p. 432.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out according to the plans of fundamental research of the institute, research topic no. AAAA-A19-119031890028-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Polyakov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Radiokhimiya, No. 1, pp. 70–82, December, 2023 https://doi.org/10.31857/S0033831123010100

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyakov, E.V., Volkov, I.V., Krasil’nikov, V.N. et al. Statics and Kinetics of Sorption of La(III), Ce(III), U(VI) Ions by a Nanostructured Composite Al2O3||C. Radiochemistry 65, 68–80 (2023). https://doi.org/10.1134/S1066362223010113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362223010113

Keywords:

Navigation