Skip to main content
Log in

Thermodynamic and Kinetic Studies of Uranium and REEs Leaching by Oxalic Acid from Abu-Tartur Phosphate Rock, Western Desert, Egypt

  • Published:
Radiochemistry Aims and scope

Abstract

Leaching of uranium and REEs with oxalic acid from the Egyptian Abu-Tartur phosphate rock (PR) was studied. The effect exerted on the leaching process by oxalic acid concentration, agitation time, solid to liquid ratio, and leaching temperature was determined. The leaching kinetics of uranium and REEs were evaluated by the shrinking core model. The uranium and REEs leaching kinetics is controlled by diffusion through the fluid film. The activation energy is 5.9 kJ/mol for U and 5.3 kJ/mol for REEs. Equations describing the leaching kinetics were obtained. The optimum conditions are oxalic acid concentration of 0.5 M, agitation time of 2 h, solid to liquid ratio of 1/4, and temperature of 70°C. Under these conditions, the degree of leaching of uranium and REEs reached 92 and 81%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Sun, Y., Ding, Y.C., Cheng, W., and Wang, X., J. Hazard. Mater., 2014, vol. 280, pp. 399–408.

    Article  CAS  Google Scholar 

  2. Edeltraud, H.R. and Rafat, W., Appl. Clay Sci., 2012, vols. 65–66, pp. 6–13.

    Google Scholar 

  3. Bigham, J.M. and Schulze, D., Iron oxides, Soil Mineralogy with Environmental Applications, Dixon, J.B., and Schulze, D.G., Eds., Madison: Soil Science Society of America Book Ser., 2002.

    Google Scholar 

  4. Zidan, I.H., Sedimentol. Egypt, 2013, vol. 2, pp. 55–67.

    Google Scholar 

  5. Gupta, C.K. and Singh, H., Uranium Resource Processing: Secondary Resources, Mumbai: Bhabha Atomic Research Centre, 2001.

    Google Scholar 

  6. Harvinderpal, S., Vijayalakshmi, R., Mishra, S.L., and Gupta, C.K., Hydrometallurgy, 2001, vol. 59, pp. 69–76.

    Article  Google Scholar 

  7. Gharabaghi, M., Irannajad, M., and Noaparast, M., Hydrometallurgy, 2010, vol. 103, pp. 96–107.

    Article  CAS  Google Scholar 

  8. Owens, C.L., Nash, G.R., Hadler, K., Fitzpatrick, R.S., Anderson, C.G., and Wall, F., Adv. Colloid Interface Sci., 2019, vol. 265, pp. 14–28. https://doi.org/10.1016/j.cis.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  9. Sheng-xi, Wu, Long-sheng, Zhao, Liang-shi, Wang, Xiao-wei, Huang, Jin-shi, Dong, Zong-yu, Feng, Da-li, Cui, and Li-feng, Zhang, Trans. Nonferrous Met. Soc. China, 2018, vol. 28, pp. 2375−2382. https://doi.org/10.1016/S1003-6326(18)64883-6

    Article  Google Scholar 

  10. Antonick, P.J., Hu, Z., Fujita, Y., Reed, D.W., Das, G., Wu, L., Shivaramaiah, R., Kim, P., Eslamimanesh, A., Lencka, M.M., Jiao, Y., Anderko, A., Navrotsky, A., and Riman, R.E., J. Chem. Thermodyn., 2019, vol. 132, pp. 491–496. https://doi.org/10.1016/j.jct.2018.12.034

    Article  CAS  Google Scholar 

  11. Lan, X., Gao, J., Du, Y., and Guo, Z., Miner. Eng., 2019, vol. 133, pp. 27–34. https://doi.org/10.1016/j.mineng.2019.01.010

    Article  CAS  Google Scholar 

  12. Picone, N., and Op den Camp, H.J., Curr. Opin. Chem. Biol., 2019, vol. 49, pp. 39–44. https://doi.org/10.1016/j.cbpa.2018.09.019

    Article  CAS  PubMed  Google Scholar 

  13. Yang, X., Werner, J., and Honaker, R.Q., J. Rare Earths, 2019, vol. 37, pp. 312–321. https://doi.org/10.1016/j.jre.2018.07.003

    Article  CAS  Google Scholar 

  14. Sadeddin, W. and Abu-Eishah, S.I., Int. J. Miner. Process., 1990, vol. 30, pp. 113–125.

    Article  CAS  Google Scholar 

  15. Abu-Eishah, S.I., Muthaker, M., Touqan, M. and Sadeddin, W., Miner. Eng., 1991, vol. 4, nos. 5/6, p. 573.

    Article  CAS  Google Scholar 

  16. Zafar, Z.I., Anwar, M.M., and Pritchard, D.W., Nutrient Cycl. Agroecosyst., 1996, vol. 46, no. 2, p. 135.

    Article  CAS  Google Scholar 

  17. Fredd, C.N. and Fogler, H.S., Chem. Eng. Sci., 1998, vol. 53, pp. 3863–3874.

    Article  CAS  Google Scholar 

  18. Zafar, I.Z. and Saeed, A.K., J. Eng. Horizons, 2004, vol. 17, pp. 15–21.

    Google Scholar 

  19. Ashraf, M., Zafar, Z.I., and Ansari, T.M., Hydrometallurgy, 2005, vol. 80, pp. 286–292.

    Article  CAS  Google Scholar 

  20. Zafar, Z.I. and Ashraf, M., Chem. Eng. J., 2007, vol. 131, p. 41.

    Article  CAS  Google Scholar 

  21. Kpomblekou, A.K. and Tabatabai, M.A., Agr. Ecosyst. Environ., 2003, vol. 100, pp. 275–284.

    Article  Google Scholar 

  22. Strobel, B.W., Geoderma, 2001, vol. 99, pp. 169–198.

    Article  CAS  Google Scholar 

  23. Rodríguez, H. and Fraga, R., Biotechnol. Adv., 1999, vol. 17, pp. 319–339.

    Article  Google Scholar 

  24. Sparks, D.L., Kinetics of Soil Chemical Processes, San Diego: Academic, 1989.

    Google Scholar 

  25. Kpomblekou, A.K. and Tabatabai, M.A., Soil Sci., 1994, vol. 158, pp. 442–453.

    Article  Google Scholar 

  26. Sagoe, I.C., Ando, T., Kouno, K., and Nagaoka, T., Soil Sci. Plant Nutr., 1997, vol. 43, pp. 1067–1072.

    Article  CAS  Google Scholar 

  27. Xu, R., Zhu, Y., and Chittleborough, D., J. Environ. Sci. China, 2004, vol. 16, no. 1, pp. 5–8.

    CAS  PubMed  Google Scholar 

  28. Sengul, H., Ozer, A.K., and Gulaboglu, M.S., Chem. Eng. J., 2006, vol. 122, p. 135.

    Article  CAS  Google Scholar 

  29. Farag, A.B., Bakry, A.R., Abdelfattah, N.A., and Elwy, A.M., Int. J. Adv. Res., 2015, vol. 3, no. 5, pp. 32–41.

    CAS  Google Scholar 

  30. Davies, W. and Gray, W., Talanta, 1964, vol. 11, no. 8, pp. 1203–1211.

    Article  CAS  Google Scholar 

  31. Marczenko, Z., and Balcerzak, M., Separation, Preconcentration, and Spectrophotometry in Inorganic Analysis: Analytical Spectroscopy Library 10, Amsterdam: Elsevier, 2000.

    Google Scholar 

  32. Bassett, J., Denney, R.C., Jeffery, G.H., and Mendhan, J., Vogel’s Textbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, London: Longman, 1985,

    Google Scholar 

  33. Shapiro, L., and Brannock, W.W., Rapid Analysis of Silicate, Carbonate, and Phosphate Rocks, vol. 114A of US Geological Survey Bulletin, Washington: US Government, 1962.

    Google Scholar 

  34. Wang, L., Recovery of Rare Harths from Wet Process Phosphoric Acid, Presented at ICHM, Zhangjiajie (China), 2009.

  35. Clauss, C.R.A. and Weiss, K. Adsorption of Aurocyanide on Carbon, Report of Investigation, Council for Scientific and Industrial Research, Pretoria, 1977, no. CENG 206.

  36. Liddell, K.C., Hydrometallurgy, 2005, vol. 79, pp. 62–68.

    Article  CAS  Google Scholar 

  37. Habashi, F., Principles of Extractive Metallurgy, General Principles, New York: Gordon and Breach, 1086.

    Google Scholar 

  38. Ray, H.S., Kinetics of Metallurgical Reactions, New Delhi: IBHC, 1993.

    Google Scholar 

  39. Rao, S.H., Yang, T., Zhang, D., Liu, W.F., Chen, L., and Hao, Z., Hydrometallurgy, 2015, vol. 158, pp. 101–106.

    Article  CAS  Google Scholar 

  40. Bezzi, N., Aifa, T., Hamoudi, S., and Merabet, D., Procedia Eng., 2012, vol. 42, pp. 1915–1927.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Bakry.

Ethics declarations

The authors state that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakry, A.R., Hashim, M.D. & Elwy, A.M. Thermodynamic and Kinetic Studies of Uranium and REEs Leaching by Oxalic Acid from Abu-Tartur Phosphate Rock, Western Desert, Egypt. Radiochemistry 62, 359–367 (2020). https://doi.org/10.1134/S106636222003008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106636222003008X

Keywords:

Navigation