Skip to main content
Log in

Use of tritium-labeled lysozyme for studying its adsorption on porous carbon materials

  • Published:
Radiochemistry Aims and scope

Abstract

The kinetics and isotherm of lysozyme adsorption and the strength of lysozyme binding to two carbon materials, activated charcoal and carbon foil, were studied using tritium-labeled lysozyme. Polyethylene films were used as a model nonporous material. The lysozyme adsorption resulted in modification of the surface of the materials, making it more hydrophilic, and the rate at which the adsorption equilibrium was attained depended on the capability of the lysozyme solution to penetrate into pores of carbon materials. The specific coverage of the surface of graphite foil, activated carbon, and polyethylene with lysozyme appeared to be virtually equal when taking into account only pores accessible to the protein. The lysozyme adsorption on the polyethylene surface is reversible, whereas on the surface of activated charcoal and graphite foil it is practically irreversible. The possibility of modification of the carbon foil surface with a lysozyme solution to increase the adsorption zone was confirmed by autoradiography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, S.C., Ahmed, F., Gutierrez, K.M., and Rodrigues, D.F., Chem. Eng. J., 2014, vol. 240, pp. 147–154.

    Article  CAS  Google Scholar 

  2. Zeinabad, H.A., Zarrabian, A., Saboury, A.A., et al., Sci. Rep., 2016, vol. 6, article no. 26508.

  3. Ding, Y., Tian, R., Yang, Z., et al., Biophys. Chem., 2016, vol. 218, pp. 36–41.

    Article  CAS  Google Scholar 

  4. Georgakilas, V., Perman, J.A., Tucek, J., et al., Chem. Rev., 2015, vol. 115, pp. 4744–4822.

    Article  CAS  Google Scholar 

  5. Gruner, G., Anal. Bioanal. Chem., 2006, vol. 384, pp. 322–335.

    Article  CAS  Google Scholar 

  6. Okpalugo, T.I.T., Ogwu, A.A., Maguire, P.D., et al., Diam. Relat. Mater., 2004, vol. 13, pp. 1088–1092.

    Article  CAS  Google Scholar 

  7. Bolisetty, S. and Mezzenga, R., Nat. Nanotechnol., 2016, vol. 11, pp. 365–371.

    Article  CAS  Google Scholar 

  8. Lousinian, S., Kalfagiannis, N., and Logothetidis, S., Mater. Sci. Eng. B, 2008, vol. 152, pp. 12–15.

    Article  CAS  Google Scholar 

  9. Huang, Y., Lü, X., Jingwu, M., and Huang, N., Appl. Surf. Sci., 2008, vol. 255, no. 2, pp. 257–259.

    Article  CAS  Google Scholar 

  10. Pamula, E. and Rouxhet, P.G., Carbon, 2005, vol. 43, pp. 1432–1438.

    Article  CAS  Google Scholar 

  11. Tansel, B. and Dizge, N., J. Environ. Manag., 2011, vol. 92, pp. 596–602.

    Article  CAS  Google Scholar 

  12. Lei, Z., Cao, Y., Dang, L., et al., J. Colloid Interface Sci., 2009, vol. 339, pp. 439–445.

    Article  CAS  Google Scholar 

  13. Hippauf, F., Lunow, D., Huettner, C., et al., Carbon, 2015, vol. 87, pp. 309–316.

    Article  CAS  Google Scholar 

  14. Bonilla, T.S. and Allen, D.G., Can. J. Chem. Eng., 2016, vol. 94, pp. 231–237.

    Article  Google Scholar 

  15. Yushin, G., Hoffman, E.N., Barsoum, M.W., et al., Biomaterials, 2006, vol. 27, pp. 5755–5762.

    Article  CAS  Google Scholar 

  16. Zolotare., Yu.A., Dadayan, A.K., Bocharov, E.V., et al., Amino Acids, 2003, vol. 24, pp. 325–333.

    Article  Google Scholar 

  17. Zolotare., Yu.A., Dadayan, A.K., Kozik, V.S., et al., Russ. J. Bioorg. Chem., 2014, vol. 40, no. 1, pp. 26–35.

    Article  Google Scholar 

  18. Chernysheva, M.G. and Badun, G.A., J. Radioanal. Nucl. Chem., 2010, vol. 286, pp. 835–840.

    Article  CAS  Google Scholar 

  19. Badun, G.A., Chernysheva, M.G., and Ksenofontov, A.L., Radiochim. Acta, 2012, vol. 100, pp. 401–408.

    Article  CAS  Google Scholar 

  20. Chernysheva, M.G. and Badun, G.A., Langmuir, 2011, vol. 27, pp. 2188–2184.

    Article  CAS  Google Scholar 

  21. Razzhivina, I.A., Badun, G.A., Chernysheva, M.G., et al., Radiochemistry, 2017, vol. 59, no. 3, pp. 284–291.

    Google Scholar 

  22. Hildebrand, N., Köppen, S., Derr, L., et al., J. Phys. Chem. C, 2015, vol. 119, pp. 7295–7307.

    Article  CAS  Google Scholar 

  23. Mitropoulos, V., Mütze, A., and Fischer, P., Adv. Colloid Interface Sci., 2014, vol. 206, pp. 195–206.

    Article  CAS  Google Scholar 

  24. Chukhrai, E.S., Pilipenko, O.S., Ovsyannikov, R.A., et al., Russ. J. Phys. Chem. A, 2010, vol. 84, no. 11, pp. 1986–1992.

    Article  CAS  Google Scholar 

  25. Pilipenko, O.S., Atyaksheva, L.F., Kryuchkova, E.V., and Chukhrai, E.S., Russ. J. Phys. Chem. A, 2012, vol. 86, no. 8, pp. 1301–1307.

    Article  CAS  Google Scholar 

  26. Kelly, J.A., Sielecki, A.R., Sykes, B.D., et al., Nature, 1979, vol. 282, pp. 875–878.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Badun.

Additional information

Original Russian Text © G.A. Badun, M.G. Chernysheva, I.A. Razzhivina, 2017, published in Radiokhimiya, 2017, Vol. 59, No. 3, pp. 255–259.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badun, G.A., Chernysheva, M.G. & Razzhivina, I.A. Use of tritium-labeled lysozyme for studying its adsorption on porous carbon materials. Radiochemistry 59, 292–296 (2017). https://doi.org/10.1134/S1066362217030122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362217030122

Keywords

Navigation