Skip to main content
Log in

Hydrolytic durability of uranium-containing sodium aluminum (iron) phosphate glasses

  • Published:
Radiochemistry Aims and scope

Abstract

Normalized mass loss and leach rates of elements from the synthesized sodium aluminum phosphate and sodium aluminum iron phosphate glasses in relation to the content of uranium introduced into the glass-forming charge in the form of uranium dioxide or uranyl nitrate were determined by the РСТ procedure (variant А). The relationship between the element leaching parameters and the structure of the anionic motif of the glass network, up to the formation of a polyanionic structure from aluminum (iron)–phosphorus–oxygen network and uranium–oxygen polyanions, was determined. The resistance of the glasses to leaching of elements is on the same level as that of reference iron phosphate glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waste forms technology and performance, Final Report, Washington: National Academic, 2011.

    Google Scholar 

  2. Chemical durability and related properties of solidified high-level waste forms, Tech. Rep. Ser., Vienna: IAEA, 1985, no.257.

    Google Scholar 

  3. Spent fuel and high level waste: Chemical durability and performance under simulated repository conditions, IAEA-TECDOC-1563, Vienna: IAEA, 2007.

    Google Scholar 

  4. Donald, I.W., Waste Immobilisation in Glass and Ceramic Based Hosts, Chichester: Wiley, 2010.

    Book  Google Scholar 

  5. Ojovan, M.I. and Lee, W.E., Metal. Mater. Trans. A, 2011, vol. 42, pp. 837–851.

    Article  CAS  Google Scholar 

  6. Fosfatnye stekla s radioaktivnymi otkhodami (Phosphate Glasses with Radioactive Waste), Vashman, A.A. and Polyakov, A.S., Eds., Moscow: TsNIIatominform, 1997.

  7. Mukhamet-Galeyev, A.P., Magazina, L.O., Levin, K.A., et al., Mater. Res. Soc. Symp. Proc., 1995, vol. 363, pp. 79–86.

    Google Scholar 

  8. Aloy, A.S., Soshnikov, R.A., Trofimenko, A.V., et al., Mater. Res. Soc. Symp. Proc., 2004, vol. 807, pp. 187–192.

    Article  CAS  Google Scholar 

  9. Glazkova, Ya.S., Kalmykov, S.N., Presnyakov, I.A., et al., Dokl. Phys. Chem., 2015, vol. 463, part 1, pp. 145–149.

    Article  CAS  Google Scholar 

  10. Stefanovsky, S.V., Stefanovskaya, O.I., Vinokurov, S.E., et al., Radiochemistry, 2015, vol. 57, no. 4, pp. 348–355.

    Article  CAS  Google Scholar 

  11. Stefanovsky, S.V., Remizov, M.B., Belanova, E.A., et al., Glass Phys. Chm., 2015, vol. 41, no. 5, pp. 489–499.

    Article  Google Scholar 

  12. Martynov, K.V., Budantseva, N.A., Tananaev, I.G., et al., Vestn. Otdel. Nauk Zemle Ross. Akad. Nauk, 2011, vol. 3, paper NZ6072, doi: 10.2205/2011NZ000202.

  13. Stefanovsky, S.V., Stefanovskaya, O.I., Kadyko, M.I., et al., Vopr. Radiats. Bezopasn., 2015, no. 3, pp. 56–66.

    Google Scholar 

  14. Yudintsev, S.V., Mal’kovskii, V.I., and Mokhov, A.V., Dokl. Earth Sci., 2016, vol. 468, part 1, pp. 503–506.

    Article  CAS  Google Scholar 

  15. Sales, B.C. and Boatner, L.A., J. Non-Cryst. Solids, 1986, vol. 79, pp. 83–116.

    Article  CAS  Google Scholar 

  16. Day, D.E., Wu, Z., Ray, C.S., and Hrma, P., J. Non-Cryst. Solids, 1998, vol. 241, pp. 1–12.

    Article  CAS  Google Scholar 

  17. Marasinghe, G.K., Karabulut, M., Ray, C.S., et al., J. Non-Cryst. Solids, 2000, vols. 263–264, pp. 146–154.

    Article  Google Scholar 

  18. Kim, C.W., Ray, C.S., Zhu, D., et al., J. Nucl. Mater., 2003, vol. 322, pp. 152–164.

    Article  CAS  Google Scholar 

  19. Stefanovsky, S.V., Stefanovsky, O.I., and Kadyko, M.I., J. Non-Cryst. Solids, 2016, vol. 443, pp. 192–198.

    Article  CAS  Google Scholar 

  20. Stefanovsky, S.V., Stefanovskaya, O.I., Murzin, V.Yu., et al., Dokl. Phys. Chem., 2016, vol. 468, part 1, pp. 76–79.

    Article  CAS  Google Scholar 

  21. Veal, B.W., Mundy, J.N., and Lam, D.J., Handbook on the Physics and Chemistry of the Actinides, Freeman, A.J. and Lander, G.H., Eds., Elsevier, 1987, pp. 271–309.

  22. ASTM Standard C 1285-94: Standard Test Methods for Determining Chemical Durability of Nuclear Waste Glasses: The Product Consistency Test (PCT), Philadelphia: ASTM, 1994.

  23. Nuclear waste materials handbook (test methods), Report DOE/TIC-11400, Washington, DC: DOE Technical Information Center, 1981.

  24. Stefanovsky, S.V., Stefanovsky, O.I., Kadyko, M.I., et al., J. Non-Cryst. Solids, 2015, vol. 425, pp. 138–145.

    Article  CAS  Google Scholar 

  25. Day, D.E. and Ray, C.S., A review of iron phosphate glasses and recommendations for vitrifying Hanford waste, Report INL/EXT-13-30839, Richland, WA: Pacific Northwest National Laboratory, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Stefanovsky.

Additional information

Original Russian Text © S.S. Danilov, S.E. Vinokurov, S.V. Stefanovsky, B.F. Myasoedov, 2017, published in Radiokhimiya, 2017, Vol. 59, No. 3, pp. 226–229.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, S.S., Vinokurov, S.E., Stefanovsky, S.V. et al. Hydrolytic durability of uranium-containing sodium aluminum (iron) phosphate glasses. Radiochemistry 59, 259–263 (2017). https://doi.org/10.1134/S1066362217030079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362217030079

Keywords

Navigation