Skip to main content
Log in

Influence of the heat treatment procedure and irradiation on the structure of the anionic motif and crystallization of uranium-containing phosphate glasses

  • Published:
Radiochemistry Aims and scope

Abstract

The solubility of UO3 in sodium almino(ferro)phosphate (SAFP) glasses prepared by quenching of melts reaches almost 50 wt %. The structure of the anionic motif of the network of such glasses is formed by polyanions and consists of alumino(ferro)phosphate and uranium–oxygen constituents. Irradiation with electrons of up to 8 MeV energy to an absorbed dose of 106 Gy does not lead to appreciable changes in the glass structure, except insignificant increase in the fraction of octahedrally coordinated aluminum. After annealing, samples of sodium aluminophosphate glasses with low content of uranium oxides (up to 10 wt %) partially crystallize with the formation of phosphotridymite, whereas high-uranium glasses (up to ~50 wt % UO3) remain X-ray amorphous. Samples of SAFP glasses at low concentrations of uranium oxides remain amorphous and at high concentrations undergo phase segregation with the formation of a SAFP glass phase enriched in uranium oxides and crystalline phase of sodium aluminum iron orthophosphate Na3(Al,Fe)2(PO4)3 containing impurity amounts of uranium ions. The incorporation of uranium ions is most probably due to the occurrence of redox processes between uranyl and iron ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Remizov, M.B., Kozlov, P.V., Logunov, M.V., et al., Vopr. Radiats. Bezopasn., 2014, no. 3, pp. 17–25.

    Google Scholar 

  2. Shtin, A.P., Fotiev, A.A., Galaktionov, A.D., and Khodos, M.Ya., Fiz. Khim. Stekla, 1976, vol. 3, no. 1, pp. 80–87.

    Google Scholar 

  3. Jin, Y., Jiang, D., Chen, X., et al., J. Non-Cryst. Solids, 1986, vol. 80, pp. 147–151.

    Article  CAS  Google Scholar 

  4. Zhuravlev, Yu.F., Pletnev, R.N., Dmitriev, A.V., et al., Fiz. Khim. Stekla, 1989, vol. 15, no. 5, pp. 648–652.

    CAS  Google Scholar 

  5. Brow, R.K., Kirkpatrick, R.J., and Turner, G.L., J. Am. The study was financially supported by the Russian Foundation for Basic Research (project no. 14-13-00 615). Ceram. Soc., 1990, vol. 73, no. 8, pp. 2293–2300.

    CAS  Google Scholar 

  6. Brow, R.K., Kirkpatrick, R.J., and Turner, G.L., J. Am. Ceram. Soc., 1993, vol. 76, no. 4, pp. 919–928.

    Article  CAS  Google Scholar 

  7. Vashman, A.A., Pronin, I.S., and Polyakov, A.S., At. Energy, 1993, vol. 75, no. 6, pp. 927–933.

    Article  Google Scholar 

  8. Belkebir, A., Rocha, J., Esculcas, A.P., et al., Spectrochim. Acta, Part A, 1999, vol. 55, pp. 1323–1336.

    Article  Google Scholar 

  9. Vashman, A.A., Samsonov, V.E., and Demin, A.V., At. Energy, 2002, vol. 92, no. 3, pp. 205–209.

    Article  CAS  Google Scholar 

  10. Zhang, L. and Eckert, H., J. Phys. Chem. B, 2006, vol. 110, pp. 8946–8958.

    Article  CAS  Google Scholar 

  11. Yu, X., Day, D.E., Long, G.J., and Brow, R.K., J. Non- Cryst. Solids, 1997, vol. 215, pp. 21–31.

    Article  CAS  Google Scholar 

  12. Reis, S.T., Karabulut, M., and Day, D.E., J. Non-Cryst. Solids, 2001, vol. 292, pp. 150–157.

    Article  CAS  Google Scholar 

  13. Glazkova, Ya.S., Kalmykov, S.N., Presniakov, I.A., et al., Dokl. Phys. Chem., 2015, vol. 463, part 1, pp. 145–149.

    Article  CAS  Google Scholar 

  14. Stefanovsky, S.V., Stefanovsky, O.I., Kadyko, M.I., et al., J. Non-Cryst. Solids, 2015, vol. 425, pp. 138–145.

    Article  CAS  Google Scholar 

  15. Stefanovsky, S.V., Stefanovskaya, O.I., Vinokurov, S.E., et al., Radiochemistry, 2015, vol. 57, no. 4, pp. 348–355.

    Article  CAS  Google Scholar 

  16. Stefanovsky, S.V., Stefanovsky, O.I., Remizov, M.B., et al., J. Nucl. Mater., 2015, vol. 466, pp. 142–149.

    Article  CAS  Google Scholar 

  17. Stefanovsky, S.V., Stefanovskaya, O.I., Kadyko, M.I., et al., Vopr. Radiats. Bezopasn., 2015, no. 3, pp. 56–66.

    Google Scholar 

  18. Veal, B.W., Mundy, J.N., and Lam, D.J., Handbook on the Physics and Chemistry of the Actinides, Freeman, A.J. and Lander, G.H., Eds., Elsevier Science, 1987, pp. 271–309.

  19. Hess, N.J., Weber, W.J., and Conradson, S.D., J. Alloys Compd., 1998, vols. 271–273, pp. 240–243.

    Article  Google Scholar 

  20. Jollivet, P., Den Auwer, C., and Simoni, E., J. Nucl. Mater., 2002, vol. 301, pp. 142–152.

    Article  CAS  Google Scholar 

  21. Aloy, A.S., Trofimenko, A.V., Iskhakova, O.A., and Jardine, L.J., Mater. Res. Soc. Symp. Proc., 2004, vol. 824, pp. 345–350.

    Article  CAS  Google Scholar 

  22. Fábián, M., Sváb, E., Mészáros, Gy., et al., J. Non- Cryst. Solids, 2007, vol. 353, pp. 1941–1945.

    Article  Google Scholar 

  23. Fábián, M., Sváb, E., and Zimmermann, M. von, J. Non-Cryst. Solids, 2013, vol. 380, pp. 71–77.

    Article  Google Scholar 

  24. Connelly, A.J., Hyatt, N.C., Travis, K.P., et al., J. Non-Cryst. Solids, 2013, vol. 378, pp. 282–289.

    Article  CAS  Google Scholar 

  25. Mishra, R., Sudarsan, V., Jain, S., et al., J. Am. Ceram. Soc., 2014, vol. 97, no. 2, pp. 427–431.

    Article  CAS  Google Scholar 

  26. Bahl, S., Koldeisz, V., Kvashnina, K., et al., Abstracts of Papers, 2nd Int. Workshop on Advanced Techniques for Actinide Spectroscopy (ATAS 2014), Dresden (Germany): HZDR, Nov. 03–07, 2014, p. 39.

    Google Scholar 

  27. Schreiber, H.D., Balazs, G.B., and Williams, B.J., J. Am. Ceram. Soc., 1982, vol. 65, no. 9, pp. 449–453.

    Article  CAS  Google Scholar 

  28. Simon, V., Ardelean, I., Cozar, O., and Simon, S., J. Mater. Sci. Lett., 1996, vol. 15, pp. 784–785.

    Article  CAS  Google Scholar 

  29. Fosfatnye stekla s radioaktivnymi otkhodami (Phosphate Glasses with Radioactive Wastes), Vashman, A.A. and Polyakov, A.S., Eds., Moscow TsNIIatominform, 1997.

  30. Karabulut, M., Marasinghe, G.K., Ray, C.S., et al., J. Mater. Res., 2000, vol. 15, no. 9, pp. 1972–1984.

    Article  CAS  Google Scholar 

  31. Brow, R.K., J. Non-Cryst. Solids, 2000, vols. 263–264, pp. 1–28.

    Article  Google Scholar 

  32. Lazarev, A.N., Mirgorodskii, A.P., and Ignat’ev, I.S., Kolebatel’nye spektry slozhnykh okislov (Vibration Spectra of Complex Oxides), Leningrad Nauka, 1975.

    Google Scholar 

  33. Plyusnina, I.I., Infrakrasnye spektry mineralov (Infrared Spectra of Minerals), Moscow Mosk. Gos. Univ., 1977.

    Google Scholar 

  34. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, Hoboken, NJ: Wiley, 2009, 6th ed., part A.

    Google Scholar 

  35. Ohwada, K. and Soga, T., Specrochim. Acta, Part A, 1973, vol. 29, pp. 843–850.

    Article  CAS  Google Scholar 

  36. Allen, G.C., Crofts, J.A., and Griffiths, A.J., J. Nucl. Mater., 1976, vol. 62, pp. 273–281.

    Article  CAS  Google Scholar 

  37. Mizuoka, K. and Ikeda, Y., Inorg. Chem., 2003, vol. 42, pp. 3396–3398.

    Article  CAS  Google Scholar 

  38. Khodakovskaya, R.Ya., J. Non-Cryst. Solids, 1990, vol. 12, pp. 275–282.

    Article  Google Scholar 

  39. Weber, W.J. and Roberts, F.P., Nucl. Technol., 1983, vol. 60, pp. 178–198.

    CAS  Google Scholar 

  40. Stefanovsky, S.V., Fiz. Khim. Obrab. Mater., 1993, no. 2, pp. 63–77.

    Google Scholar 

  41. Appen, A.A., Khimiya stekla (Glass Chemistry), Leningrad Khimiya, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Stefanovsky.

Additional information

Original Russian Text © S.V. Stefanovsky, O.I. Stefanovskaya, M.I. Kadyko, B.S. Nikonov, B.F. Myasoedov, 2016, published in Radiokhimiya, 2016, Vol. 58, No. 6, pp. 561–567.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanovsky, S.V., Stefanovskaya, O.I., Kadyko, M.I. et al. Influence of the heat treatment procedure and irradiation on the structure of the anionic motif and crystallization of uranium-containing phosphate glasses. Radiochemistry 58, 654–661 (2016). https://doi.org/10.1134/S106636221606014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106636221606014X

Keywords

Navigation