Skip to main content
Log in

Synthesis and crystal structure of double Ln(III) malonates with Co(NH3) 3+6 in the outer sphere

  • Published:
Radiochemistry Aims and scope

Abstract

Double Ln(III) malonates of two different compositions crystallize from malonate solutions containing [Co(NH3)6]3+ ions. Lanthanides of the beginning of the series form compounds of the composition [Co(NH3)6][Ln(mal)2]3·6H2O (I) (Ln = La, Ce, Pr, Nd; mal = C3H2O2−), and those of the end of the series form compounds of the composition [Co(NH3)6]2[Ln3(mal)7(Hmal)(H2O)4nH2O (II) (Ln = Tb, Ho, Er, Tm). Structure I is based on trimeric anionic complexes [Ln3(mal)6]3− linked with each other to form a branched 3D network with [Co(NH3)6]3+ cations and water molecules accommodated in large voids. The coordination mode of malonate ions in I with the coordination capacity equal to 5 was unknown previously for lanthanide malonate compounds. The Ln(1) atom has the maximum possible for malonate compounds coordination number (CN) 12, and the Ln(2) atom has CN 9. The structure of II consists of anionic chains [Ln3(mal)7(Hmal)(H2O)4] 3− n between which the [Co(NH3)6]3+ cations and water molecules are arranged. One independent malonate ion in the structure is coordinated in the bidentate chelate fashion to the Ln(1) atom, and the other independent chelate-bridging ligand is coordinated in the bidentate fashion to the Ln(2) atom and in the monodentate fashion to the Ln(1) atom. As a result, tetrameric fragments linked in anionic chains are formed in the structure of II. The Ln(1) and Ln(2) atoms have CN 8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krot, N.N., Grigor’ev, M.S., and Charushnikova, I.A., Radiochemistry, 2004, vol. 46, no. 2, pp. 107–110.

    Article  CAS  Google Scholar 

  2. Krot, N.N., Charushnikova, I.A., and Grigor’ev, M.S., Radiochemistry, 2004, vol. 46, no. 2, pp. 111–114.

    Article  CAS  Google Scholar 

  3. Grigor’ev, M.S., Charushnikova, I.A., Starikova, Z.A., et al., Radiochemistry, 2004, vol. 46, no. 3, pp. 232–235.

    Article  Google Scholar 

  4. Charushnikova, I.A., Krot, N.N., and Polyakova, I.N., Radiochemistry, 2004, vol. 46, no. 4, pp. 347–350.

    Article  CAS  Google Scholar 

  5. Charushnikova, I.A., Krot, N.N., and Starikova, Z.A., Radiochemistry, 2004, vol. 46, no. 5, pp. 429–433.

    Article  CAS  Google Scholar 

  6. Krot, N.N., Bessonov, A.A., Charushnikova, I.A., et al., Radiochemistry, 2005, vol. 47, no. 3, pp. 247–251.

    Article  CAS  Google Scholar 

  7. Krot, N.N., Bessonov, A.A., Charushnikova, I.A., et al., Radiochemistry, 2005, vol. 47, no. 5, pp. 464–467.

    Article  CAS  Google Scholar 

  8. Krot, N.N., Bessonov, A.A., Grigor’ev, M.A., and Makarenkov, V.I., Radiochemistry, 2005, vol. 47, no. 5, pp. 472–274.

    Article  CAS  Google Scholar 

  9. Grigoriev, M.S., Krot, N.N., Bessonov, A.A., and Lyssenko, K.A., Acta Crystallogr., Sect. E, 2006, vol. 62, no. 11, pp. m2889–m2890.

    Article  CAS  Google Scholar 

  10. Hernández-Molina, M., Lorenzo-Luis, P.A., Ruiz-Pérez, C., et al., J. Chem. Soc., Dalton Trans., 2002, no. 18, pp. 3462–3470.

    Google Scholar 

  11. Hernández-Molina, M., Ruiz-Pérez, C., López, T., et al., Inorg. Chem., 2003, vol. 42, no. 18, pp. 5456–5458.

    Article  Google Scholar 

  12. Chrysomallidu, K.E., Perlepes, S.P., Terzis, A., and Raptopoulou, C.P., Polyhedron, 2010, vol. 29, no. 16, pp. 3118–3124.

    Article  Google Scholar 

  13. Cañadillas-Delgado, L., Pasán, J., Fabelo, O., et al., Inorg. Chem., 2006, vol. 45, no. 26, pp. 10 585–10 594.

    Article  Google Scholar 

  14. Hansson, E., Acta Chem. Scand., 1973, vol. 27, no. 8, pp. 2827–2840.

    Article  CAS  Google Scholar 

  15. Hernández-Molina, M., Lorenzo-Luis, P.A., López, T., et al., CrystEngComm., 2000, vol. 2, no. 31, pp. 169–173.

    Article  Google Scholar 

  16. Benmerad, B., Guehria-Laidoudi, A., Bernardinelli, G., and Balegroune, F., Acta Crystallogr., Sect. C, 2000, vol. 56, no. 3, pp. 321–323.

    Article  Google Scholar 

  17. Marrot, F. and Trombe, J.-C., Polyhedron, 1994, vol. 13, no. 12, pp. 1931–1935.

    Article  CAS  Google Scholar 

  18. Sheldrick, G.M., SADABS, Madison, Wisconsin (USA): Bruker AXS, 2004.

    Google Scholar 

  19. Sheldrick, G.M., Acta Crystallogr., Sect. A, 2008, vol. 64, no. 1, pp. 112–122.

    Article  CAS  Google Scholar 

  20. Nardelli, M., J. Appl. Crystallogr., 1999, vol. 21, no. 3, pp. 563–571.

    Article  Google Scholar 

  21. Shirley, R., The CRYSFIRE System for Automatic Powder Indexing: User’s Manual, Guildford, Surrey (UK): Lattice, 2000.

    Google Scholar 

  22. Altermatt, U.D. and Brown, I.D., Acta Crystallogr., Sect. A, 1987, vol. 43, no. 1, pp. 125–130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Charushnikova.

Additional information

Original Russian Text © I.A. Charushnikova, N.N. Krot, V.I. Makarenkov, Z.A. Starikova, 2014, published in Radiokhimiya, 2014, Vol. 56, No. 4, pp. 309–316.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charushnikova, I.A., Krot, N.N., Makarenkov, V.I. et al. Synthesis and crystal structure of double Ln(III) malonates with Co(NH3) 3+6 in the outer sphere. Radiochemistry 56, 364–373 (2014). https://doi.org/10.1134/S106636221404002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106636221404002X

Keywords

Navigation