Skip to main content
Log in

Adsorption of 60Co on natural and dithizone-modified chitin

  • Published:
Radiochemistry Aims and scope

Abstract

Immobilization of dithizone onto natural biopolymer chitin to enhance the ability of chitin to adsorb 60Co was performed. Natural and dithizone-modified chitin was characterized using surface area analyzer and infrared spectroscopy. The sorption was studied in relation to the contact time, pH, initial 60Co concentration, and adsorbent dosage. Batch adsorption models based on the assumption of the pseudo-first-order, pseudosecondorder, and intraparticle models were applied to examine the adsorption kinetics. The results showed that kinetic data followed closely the pseudo-first-order model. The Freundlich, Langmuir, and Redlich-Peterson isotherms were used for the mathematical description of the adsorption equilibrium, and the best fitting was attained using the Freundlich model. Sorption studies were also performed at different temperatures to obtain the thermodynamic parameters of the process. The quantity ΔG 0 decreases with an increase in temperature, indicating that the sorption is more favorable at higher temperatures. The positive value of ΔH 0 indicates that the sorption is endothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmadpour, A., Tahmasbi, M., Rohani Bastami, T., and Amel Besharati, J., J. Hazard. Mater., 2009, vol. 166, pp. 925–930.

    Article  CAS  Google Scholar 

  2. Lebedev, V.N., Radiokhimiya, 2003, vol. 45, no. 2, pp. 140–141.

    Google Scholar 

  3. Kudesia, V.P., Water Pollution, Meerut: Pregatiprakashan, 1990.

    Google Scholar 

  4. Bailey, S.E., Olin, T.J., Brica, R.M., and Adrin, D.D., Water Res., 1999, vol. 33, pp. 2469–2479.

    Article  CAS  Google Scholar 

  5. Abu Al-Rub, F.A., El-Naas, M.H., Ashour, I., and Al-Marzouqi, M., Proc. Biochem., 2006, vol. 41, pp. 457–464.

    Article  Google Scholar 

  6. Sutton, R.M.C., Hill, S.J., and Jones, P., J. Chromatogr., 1996, vol. 739, p. 81.

    Article  CAS  Google Scholar 

  7. Naghmush, A.M., Pyrzynska, K., and Trojanowicz, M., Talanta, 1995, vol. 42, no. 6, p. 851.

    Article  CAS  Google Scholar 

  8. Muzzarelli, R.A.A., Chitin, Oxford: Pergamon, 1977.

    Google Scholar 

  9. Kurita, K., Prog. Polym. Sci., 2001, vol. 26, p. 1921.

    Article  CAS  Google Scholar 

  10. Shahidi, F., Arachchi, J.K.V., and Jeon, Y.-L., Trends Food Sci. Technol., 1999, vol. 10, p. 37.

    Article  CAS  Google Scholar 

  11. Inmaculada, A., Harris, R., and Heras, A., Curr. Org. Chem., 2010, vol. 14, pp. 308–330.

    Article  Google Scholar 

  12. Yun Wu, Shuzhen Zhang, Xueyan Guo, and Honglin Huang, Bioresource Technol., 2008, vol. 99, pp. 7709–7715.

    Article  CAS  Google Scholar 

  13. No, H.K., Mayers, S.P., and Lee, K.S., J. Agric. Food Chem., 1989, vol. 37, no. 3, pp. 575–579.

    Article  CAS  Google Scholar 

  14. Mudasir, G.R., Iqmal, T., and Endang, T.W., J. Phys. Sci., 2008, vol. 19, no. 1, pp. 63–78.

    CAS  Google Scholar 

  15. Razmute, G., Tarozaite, R., and Nivinskiene, O., Chemical Composition and Sorption Properties of Chitosan from Fly Larva Shells, Research Rep., Inst. of Chemistry (Lithuania), 2003.

  16. Granados, F., Bertin, V., Bulbulian, S., and Solache-Rios, M., Appl. Radiat. Isot., 2006, vol. 64, pp. 291–297.

    Article  CAS  Google Scholar 

  17. Marczenko, Z., Separation and Spectrophotometric Determination of Elements, West Sussex (UK): Ellis Horwood, 1986.

    Google Scholar 

  18. Thomas, L.C. and Chamberlin, G.J., Colorimetric Chemical Analytical Methods, Salisbury (UK): Tintometer, 1980.

    Google Scholar 

  19. Guibal, E., Sep. Purif. Technol., 2004, vol. 38, pp. 43–74.

    Article  CAS  Google Scholar 

  20. Saifuddin Nomanbhay, M. and Palanisamy, K., Environ. Biotechnol., 2005, vol. 8, no. 1, pp. 1–13.

    Google Scholar 

  21. Bhatnagar, A. and Minocha, A.K., Colloids Surf. B: Biointerfaces, 2010, vol. 76, pp. 544–548.

    Article  CAS  Google Scholar 

  22. Justi, K.C., Favere, V.T., Laranjeita, M.C.M., et al., J. Colloid Interface Sci., 2005, vol. 29, pp. 291–369.

    Google Scholar 

  23. Ho, Y.S. and McKay, G., Process Biochem., 1999, vol. 34, pp. 451–465.

    Article  CAS  Google Scholar 

  24. Aziz, A., Ouali, M.S., and Elandaloussi, E.H., J. Hazard. Mater., 2009, vol. 163, pp. 441–447.

    Article  CAS  Google Scholar 

  25. Weber, W.J. and Morris, J.C., J. San. Eng. Div. ASCE, 1963, vol. 899 (SA2), p. 31.

    Google Scholar 

  26. Abd El-Rahman, K.M., El-Kamash, A.M., El-Sourougy, M.R., and Abdel-Moniem, N.M., J. Radioanal. Nucl. Chem., 2006, vol. 268, pp. 221–230.

    Article  CAS  Google Scholar 

  27. El-Kamash, A.M., Zaki, A.A., and Abd El Geleel, M., J. Hazard. Mater., 2005, vol. 127, pp. 211–220.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Omar.

Additional information

Published in Russian in Radiokhimiya, 2013, Vol. 55, No. 1, pp. 68–73.

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omar, H.A. Adsorption of 60Co on natural and dithizone-modified chitin. Radiochemistry 55, 101–107 (2013). https://doi.org/10.1134/S1066362213010207

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362213010207

Keywords

Navigation