Skip to main content
Log in

Influence of the nature of oxygen-containing minerals on their sorption ability toward U(VI)

  • Published:
Radiochemistry Aims and scope

Abstract

Sorption of U(VI) on natural and synthetic oxygen-containing minerals was studied. With respect to the sorption ability toward U(VI), natural minerals can be ranked in the order iron-containing > aluminum-containing > silicon-containing, and synthetic minerals, in the order iron-containing ≈ silicon-containing ≫ aluminum-containing. It was demonstrated by the example of Fe(OH)3, α-FeO(OH), and γ-FeO(OH) that crystalline minerals bind U(VI) at pH values corresponding to natural media (pH > 7.5) better than do amorphous minerals. The ionic strength does not affect the U(VI) sorption owing to formation of strong inner-sphere complexes on the mineral surface. The presence in solution of complexing agents in small amounts can enhance the U(VI) sorption owing to formation of ternary surface complexes, whereas large excess of the ligand decreases the sorption because of the shift of the equilibrium toward formation of soluble complexes migrating in the environment by long distances with water streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grenthe, I., Chemical Thermodynamics of Uranium, Paris: OECD, 2003.

    Google Scholar 

  2. Babkov, V.F. and Gerburt-Geibovich, A.V., Osnovy gruntovedeniya i mekhaniki gruntov (Principles of Soil Science and Soil Mechanics), Moscow: Vysshaya Shkola, 1964.

    Google Scholar 

  3. Missana, T., Garcia-Gutierrez, M., and Maffiotte, C., J. Colloid Interface Sci., 2003, vol. 260, pp. 291–301.

    Article  CAS  Google Scholar 

  4. Zhang Hongxia, Xie Yongxin, and Tao Zuyi, Colloids Surf. A: Physicochem. Eng. Aspects, 2005, vol. 252, no. 1, pp. 1–5.

    Article  CAS  Google Scholar 

  5. Hongxia, Z. and Zuyi, T., J. Radioanal. Nucl. Chem., 2002, vol. 254, no. 1, pp. 103–107.

    Article  Google Scholar 

  6. Moyes, L.N., Parkman, R.H., Charnock, J.M., et al., Environ. Sci. Technol., 2000, vol. 34, no. 6, pp. 1062–1068.

    Article  CAS  Google Scholar 

  7. Sherman, D.M., Peacock, C.L., and Hubbard, C.G., Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 298–310.

    Article  CAS  Google Scholar 

  8. Gabriel, U., Charlet, L., Schläpfer, C.W., et al., J. Colloid Interface Sci., 2001, vol. 239, pp. 358–368.

    Article  CAS  Google Scholar 

  9. Chang, H.-S., Korshin, G.V., Wang, Z., and Zachara, J.M., Environ. Sci. Technol., 2006, vol. 40, no. 4, pp. 1244–1249.

    Article  CAS  Google Scholar 

  10. Baumann, N., Brendler, V., Arnold, T., et al., J. Colloid Interface Sci., 2005, vol. 290, no. 2, pp. 318–324.

    Article  CAS  Google Scholar 

  11. Um, W., Serne, R.J., Brown, C.F., and Rod, K.A., Appl. Geochem., 2008, vol. 23, pp. 2649–2657.

    Article  CAS  Google Scholar 

  12. Keith-Roach, M.J., Sci. Total Environ., 2008, vol. 396, pp. 1–11.

    Article  CAS  Google Scholar 

  13. Karyakin, Yu.V. and Angelov, I.I., Chistye khimicheskie veshchestva (Pure Chemicals), Moscow: Khimiya, 1974.

    Google Scholar 

  14. Brauer, G., Handbuch der präparativen anorganischen Chemie, Stuttgart: Enke, 1954.

    Google Scholar 

  15. Klyuchnikov, N.G., Rukovodstvo po neorganicheskomu sintezy (Manual on Inorganic Synthesis), Moscow: Khimiya, 1965.

    Google Scholar 

  16. Nemodruk, A.A. and Glukhova, L.P., Zh. Anal. Khim., 1963, vol. 43, no. 1, pp. 93–98.

    Google Scholar 

  17. Pshinko, G.N., Bogolepov, A.A., Kobets, S.A., and Kosorukov, A.A., Radiokhimiya, 2009, vol. 51, no. 2, pp. 187–190.

    Google Scholar 

  18. McKinley, J.P., Zachara, J.M., Smith, S.C., and Turner, G.D., Clays Clay Miner., 1995, vol. 43, no. 5, pp. 586–598.

    Article  CAS  Google Scholar 

  19. Bargar, J.R., Reitmeyer, R., Lenhart, J.J., and Davis, J.A., Geochim. Cosmochim. Acta, 2000, vol. 64, no. 16, pp. 2737–2749.

    Article  CAS  Google Scholar 

  20. Froideval, A., Del Nero, M., Barillon, R., et al., J. Colloid Interface Sci., 2003, vol. 266, no. 1, pp. 221–235.

    Article  CAS  Google Scholar 

  21. Kornilovich, B.Yu., Pshinko, G.N., and Bogolepov, A.A., Radiokhimiya, 2006, vol. 48, no. 6, pp. 525–528.

    Google Scholar 

  22. Nowack, B., Lützenkirchen, J., Behra, P., and Sigg, L., Environ. Sci. Technol., 1996, vol. 30, no. 7, pp. 2397–2405.

    Article  CAS  Google Scholar 

  23. Nowack, B. and Sigg, L., J. Colloid Interface Sci., 1996, vol. 177, no. 1, pp. 106–121.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Pshinko.

Additional information

Original Russian Text © V.V. Goncharuk, G.N. Pshinko, S.A. Kobets, A.A. Kosorukov, A.A. Bogolepov, 2010, published in Radiokhimiya, 2010, Vol. 52, No. 3, pp. 241–246.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goncharuk, V.V., Pshinko, G.N., Kobets, S.A. et al. Influence of the nature of oxygen-containing minerals on their sorption ability toward U(VI). Radiochemistry 52, 284–290 (2010). https://doi.org/10.1134/S1066362210030112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362210030112

Key words

Navigation