Skip to main content
Log in

Sorption of plutonium in various oxidation states from aqueous solutions on Taunit carbon nanomaterial

  • Published:
Radiochemistry Aims and scope

Abstract

Sorption of Pu from weakly acidic and weakly alkaline solutions on Taunit carbon nanomaterial was studied. Under these conditions, both polymeric Pu(IV) and ionic Pu(V, VI) species are recovered from freshly prepared solutions. Also, Pu is efficiently sorbed from simulated groundwater after more than 10 months of storage. The Pu sorption in all the forms by carbon nanotubes is rapid and almost quantitative (95 ± 5%) at the sorbent-to-solution ratio of 1 : 80 g ml−1. Plutonium preliminarily sorbed on Taunit can be efficiently immobilized in a magnesium potassium phosphate ceramic whose physicochemical properties meet the requirements of prolonged environmentally safe storage of long-lived radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Penrose, W.R., Polzer, W.L., Essington, E.H., et al., Environ. Sci. Technol., 1990, vol. 24, no. 2, pp. 228–234.

    Article  CAS  Google Scholar 

  2. Kaplan, D.L., Bertsch, P.M., Andriano, D.C., and Orlandini, K.A., Radiochim. Acta, 1994, vols. 66/67, p. 181.

    CAS  Google Scholar 

  3. Kersting, A.B., Efurd, D.W., Finnegan, D.L., et al., Nature, 1999, vol. 397, no. 1, pp. 56–59.

    Article  CAS  Google Scholar 

  4. Novikov, A.P., Kalmykov, S.N., Utsunomiya, S., et al., Science, 2006, vol. 314, pp. 638–641.

    Article  CAS  Google Scholar 

  5. Rakov, E.G., Usp. Khim., 2001, vol. 70, no. 10, pp. 934–970.

    Google Scholar 

  6. Merkoc, A., Microchim. Acta, 2006, vol. 152, pp. 157–174.

    Article  Google Scholar 

  7. Belloni, F., Kütahyali, C., Rondinella, V.V., et al., Environ. Sci. Technol., 2009, vol. 43, pp. 1250–1261.

    Article  CAS  Google Scholar 

  8. Wang, X., Chen, C., Hu, W., et al., Environ. Sci. Technol., 2005, vol. 39, no. 8, pp. 2856–2860.

    Article  CAS  Google Scholar 

  9. Abbasi, W.A. and Streat, M., Solvent Extr. Ion Exch., 1998, vol. 16, pp. 1303–1320.

    Article  CAS  Google Scholar 

  10. Chen, C.L., Li, X.K., and Wang, X.K., Radiochim. Acta, 2007, vol. 95, pp. 261–266.

    Article  CAS  Google Scholar 

  11. Tan, X.L., Xu, D., Chen, C.L., et al., Radiochim. Acta, 2008, vol. 96, pp. 23–29.

    Article  CAS  Google Scholar 

  12. Stafiej, A. and Pyrzynska, K., Sep. Purif. Technol., 2007, vol. 58, pp. 49–52.

    Article  CAS  Google Scholar 

  13. Lu, C., Liu, C., and Rao, G.P., J. Hazard. Mater., 2008, vol. 151, pp. 239–246

    Article  CAS  Google Scholar 

  14. Myasoedova, G.V., Molochnikova, N.P., Tkachev, A.G., et al., Radiokhimiya, 2009, vol. 51, no. 2, pp. 138–139.

    Google Scholar 

  15. Tkachev, F.G., Mishchenko, S.V., Negrov, V.L., et al., Prom. Tekhnol., 2007, no. 2, pp. 24–26.

  16. Milyukova, M.S., Gusev, N.I., Sentyurin, I.G., and Sklyarenko, I.S., Analiticheskaya khimiya plutoniya (Analytical Chemistry of Plutonium), Moscow: Nauka, 1965.

    Google Scholar 

  17. Kulyako, Yu.M., Perevalov, S.A., Trofimov, T.I., et al., Radiokhimiya, 2009, vol. 51, no. 4, pp. 323–326.

    Google Scholar 

  18. Kulyako, Yu.M., Mal’kovskii, V.I., Trofimov, T.I., et al., Radiokhimiya, 2008, vol. 50, no. 6, pp. 518–523.

    Google Scholar 

  19. Wagh, A.S., Chemically Bonded Phosphate Ceramics-Twenty-First Century Materials with Diverse Applications, Oxford (UK): Elsevier, 2004, ch. 17.

    Google Scholar 

  20. ASTM C 695-81: Compressive Strength of Carbon and Graphite.

  21. Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-Term Test Procedure, ANSI/ANS-16.1-1986, La Grange Park, IL: Am. Nucl. Soc., 1986.

  22. Godbee, H.W. and Joy, D.S., Assessment of the Loss of Radioactive Isotopes from Waste Solids to the Environment, part 1: Background and Theory, ORNL-TM-4333, 1974.

  23. Kulyako, Yu.M., Vinokurov, S.E., Myasoedov, B.F., et al., Recent Advances in Actinide Sciences, Alvarez, R., Bryan, N.D., and May, I., Eds., Cambridge: Roy. Soc. Chem., 2006, pp. 427–429.

    Google Scholar 

  24. GOST (State Standard) R 51883-2002: Cemented Radioactive Wastes. General Technical Requirements.

  25. Vinokurov, S.E., Kulyako, Yu.M., Slyuntchev, O.M., et al., J. Nucl. Mater., 2009, vol. 385, pp. 189–192.

    Article  CAS  Google Scholar 

  26. Wagh, A., Singh, D., and Jeong, S.Y., Encyclopedia of Environmental Technology, CRC, 2001, pp. 6.3-1–6.3-18.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Kulyako.

Additional information

Original Russian Text © Yu.M. Kulyako, S.A. Perevalov, D.A. Malikov, S.E. Vinokurov, B.F. Myasoedov, 2010, published in Radiokhimiya, 2010, Vol. 52, No. 3, pp. 234–237.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulyako, Y.M., Perevalov, S.A., Malikov, D.A. et al. Sorption of plutonium in various oxidation states from aqueous solutions on Taunit carbon nanomaterial. Radiochemistry 52, 276–280 (2010). https://doi.org/10.1134/S1066362210030094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362210030094

Key words

Navigation