Skip to main content
Log in

Formation of polymeric Pu(IV) hydroxide structures in aqueous solutions

  • Published:
Radiochemistry Aims and scope

Abstract

Forms of occurrence of polymeric Pu(IV) in simulated groundwater (SGW) were studied spectrophotometrically and by the method of centrifugal ultrafiltration through filtering inserts permeable to polymeric Pu species with different molecular weights. The dependences of the fractions of definite Pu(IV) forms on the total Pu content in the solution were found. The possibility of formation of Pu(IV) quasipolymeric structures in aqueous solutions was considered in relation to the problem of the transfer of radioactive contaminants with underground water. Equilibrium distribution of Pu(IV) polymers depending on the total Pu(IV) concentration in the solution was analyzed theoretically. From the experimental data obtained, the parameter allowing determination of the weight distribution of the polymeric particles in relation to the total Pu(IV) concentration was theoretically calculated, and their equilibrium distributions depending on the total Pu(IV) concentration were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laverov, N.P., Kantsel’, A.V., Lisitsyn, A.K., et al., At. Energ., 1991, vol. 71, no. 6, pp. 523–534.

    Article  CAS  Google Scholar 

  2. End Points for Spent Nuclear Fuel and High-Level Radioactive Waste in Russia and the United States, Committee on End Points for Spent Nuclear Fuel and High-Level Radioactive Waste in Russia and the United States, Washington: National Academies, 2003.

  3. Choi, I., in Mezhdunarodnoe khranilishche obluchennogo yadernogo topliva: Materialy mezhdunarodnogo seminara (Int. Depository of Spent Nuclear Fuel: Proc. Int. Workshop), Moscow, May 14–15, 2003, Moscow: Ross. Akad. Nauk, 2005, pp. 73–84.

    Google Scholar 

  4. Krauskopf, K.B., Ann. Rev. Earth Planet. Sci., 1988, vol. 16, pp. 173–200.

    Article  CAS  Google Scholar 

  5. Hara, K., Takeda, S., and Masuda, S., in Proc. Int. Conf. on Deep Geological Disposal of Radioactive Waste, Winnipeg (Canada), September 16–19, 1996, pp. 1-3–1-21.

  6. McCombie, C., Lambert, A., and McKinley, I.G., in Proc. Int. Symp. on Geological Disposal of Spent Fuel, High Level and Alpha Bearing Wastes, Antwerpen, October 19–23, 1992, Vienna: IAEA, 1993, pp. 365–373.

    Google Scholar 

  7. The Scientific and Regulatory Basis for the Geological Disposal of Radioactive Waste, Savage, D., Ed., Chichester: Wiley, 1997.

    Google Scholar 

  8. Laverov, N.M., Omel’yanenko, B.I., and Velichkin, V.I., Geoekologiya, 1994, no. 6, pp. 3–20.

  9. Mironenko, V.A. and Rumynin, V.G., Problemy gidrogeoekologii (Problems of Hydrogeoecology), Moscow: Mosk. Gos. Gornyi Univ., 1988, vol. 1.

    Google Scholar 

  10. Bates, J.K., Bradley, J.P., Teetsov, A., et al., Science, 1992, vol. 256, May, pp. 649–651.

    Article  CAS  Google Scholar 

  11. Penrose, W.R., Polzer, W.L., Essington, E.H., et al., Environ. Sci. Technol., 1990, vol. 24, no. 2, pp. 228–234.

    Article  CAS  Google Scholar 

  12. Dunnivant, F.M., Jardine, P.M., Taylor, D.L., and McCarthy, J.F., Environ. Sci. Technol., 1992, vol. 25, no. 2, pp. 360–368.

    Article  Google Scholar 

  13. Airey, P.L., Chem. Geol., 1986, vol. 55, no. 3/4, pp. 255–268.

    Article  CAS  Google Scholar 

  14. Kersting, A.B., Efurd, D.W., Finnegan, D.L., et al., Nature, 1999, vol. 397, no. 1, pp. 56–59.

    Article  CAS  Google Scholar 

  15. Short, S.A. and Lowson, R.T., Geochim. Cosmochim. Acta, 1988, vol. 52, no. 11, pp. 2555–2563.

    Article  CAS  Google Scholar 

  16. Lührmann, L., Modellierung des colloidbeeinflussten Schadstoff Transports mit dem Rechenprogramm TRAPIC, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, 1999, no. GRS-149.

  17. Sasaki, T., Kobayashi, T., Takagi, I., and Moriyama, H., Radiochim. Acta, 2006, vol. 94, pp. 1–6.

    Article  Google Scholar 

  18. The Actinide Elements, Seaborg, G.T. and Katz, J.J., Eds., New York, 1954.

  19. Voloshchuk, V.M., Kineticheskaya teoriya koagulyatsii (Kinetic Theory of Coagulation), Moscow: Gidrometeoizdat, 1984.

    Google Scholar 

  20. Buesseler, K.O., Bauer, J.E., Chen, R.F., et al., Marine Chem., 1996, vol. 55, nos. 1–2, pp. 1–31.

    Article  CAS  Google Scholar 

  21. Fane, A.G., Fell, C.J.D., and Waters, A.G., J. Membrane Sci., 1981, vol. 9, no. 3, pp. 245–262.

    Article  CAS  Google Scholar 

  22. Pham, M.K. and Garnier, J.-M., Environ. Sci. Technol., 1998, vol. 32, no. 4, pp. 440–449.

    Article  CAS  Google Scholar 

  23. Salbu, B., Bjørnstad, H.E., Lindstrøm, N.S., et al., Talanta, 1985, vol. 32, no. 9, pp. 907–913.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.M. Kulyako, V.I. Mal’kovskii, T.I. Trofimov, B.F. Myasoedov, Ai Fujiwara, O. Tochiyama, 2008, published in Radiokhimiya, 2008, Vol. 50, No. 6, pp. 518–523.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulyako, Y.M., Mal’kovskii, V.I., Trofimov, T.I. et al. Formation of polymeric Pu(IV) hydroxide structures in aqueous solutions. Radiochemistry 50, 594–600 (2008). https://doi.org/10.1134/S1066362208060027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362208060027

PACS numbers

Navigation