Skip to main content
Log in

Destructive analysis of the nuclide composition of spent fuel of WWER-440, WWER-1000, and RBMK-1000 reactors

  • Published:
Radiochemistry Aims and scope

Abstract

The results of analysis of spent nuclear fuel (SNF) by destructive methods, carried out systematically at the Khlopin Radium Institute for over 20 years till the mid-1990s, are presented. These data constitute the experimental base for the development of nondestructive methods, correction of calculation programs, substantiation of correlation techniques of determination of individual components of SNF, and for some other purposes. The isotope compositions of U, Pu, Am, and Cm and the fuel burn-up values are presented for 81 SNF samples from WWER-440, WWER-1000, and RBMK-1000 reactors. The burn-up values are determined with 148Nd, 145 + 146Nd, and 137Cs monitors. The utilized methods, including ion-exchange and distribution chromatography, electromigration, and coprecipitation, as well as α-ray spectrometry, luminescence analysis, and mass spectrometry, are briefly discussed. The principal method utilized is isotope dilution α-ray spectrometry or isotope dilution mass spectrometry. A number of isotopes certified as reference samples of different categories, prepared at the Radium Institute, served as spikes. A combination of these methods allows the isotope composition to be estimated accurately to within ≤0.15% for U, ≤0.5% for Pu, and 3–5% for Am and Cm. The accumulated data set for the SNF from WWER and RBMK reactors is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belyaev, B.N., Lovtsyus, A.V., Makarova, T.P., and Stepanov, A.V., Radiokhimiya, 1988, vol. 30, no. 1, p. 3.

    CAS  Google Scholar 

  2. Makarova, T.P., Stepanov, A.V., Belyaev, B.N., et al., Abstracts of Papers, Rossiiskaya konferentsiya po radiokhimii (Russian Conf. on Radiochemistry), St. Petersburg, 2000, p. 13.

  3. Stepanov, A.V., Makarova, T.P., Belyaev, B.N., et al., At. Energ., 1980, vol. 49, no. 4, p. 225.

    CAS  Google Scholar 

  4. Stepanov, A.V., Makarova, T.P., Belyaev, B.N., et al., At. Energ., 1983, vol. 55, no. 3, p. 141–145.

    CAS  Google Scholar 

  5. Makarova, T.P., Preobrazhenskaja, L.D., Lovtsyus, A.V., et al., J. Radioanal. Chem., 1983, vol. 80, nos. 1–2, pp. 173–182.

    Article  CAS  Google Scholar 

  6. Andreev-Savel’ev, V.M., Belyaev, B.N., Bulyanitsa, L.S., et al., Radiokhimiya, 1987, vol. 29, no. 3, pp. 397–401.

    CAS  Google Scholar 

  7. Belyaev, B.N., Lovtsyus, A.V., Makarova, T.P., and Skorodumov, L.M., Radiokhimiya, 1982, vol. 24, no. 2, pp. 185–190.

    CAS  Google Scholar 

  8. Belyaev, B.N., Domkin, V.D., Makarova, T.P., et al., Radiokhimiya, 1997, vol. 39, no. 1, pp. 61–65.

    Google Scholar 

  9. Stepanov, A.V., Makarova, T.P., and Gritchenko, S.G., J. Radioanal. Chem., 1974, vol. 21, pp. 411–417.

    Article  CAS  Google Scholar 

  10. Belyaev, B.N., Tuz, V.N., and Firsanov, G.A., Prib. Tekh. Eksp., 1988, no. 5, p. 121.

  11. Stepanov, A.V., Makarova, T.P., Chubinskii-Nadezhdin, I.V., et al., Radiokhimiya, 2004, vol. 46, no. 5, pp. 464–470.

    Google Scholar 

  12. Makarova, T.P., Belyaev, B.N., Stepanov, A.V., et al., Proc. Int. Symp. on Nuclear Material Safeguards, IAEA-SM293/67, 1987, vol. 1, pp. 727–736.

    Google Scholar 

  13. Ryzhinskii, M.V., Stepanov, A.V., and Preobrazhenskaya, L.D., Zh. Anal. Chem., 1978, vol. 33, no. 3, pp. 499–505.

    CAS  Google Scholar 

  14. Nikitina, S.A., Lipovskii, A.A., and Demianova, T.A., J. Radioanal. Chem., 1983, vol. 80, nos. 1–2, pp. 183–188.

    Article  CAS  Google Scholar 

  15. Aleksandruk, V.M., Babaev, A.S., and Dem’yanova, T.A., Radiokhimiya, 1989, vol. 31, no. 4, pp. 139.

    CAS  Google Scholar 

  16. Bibichev, B.A., Fedotov, P.I., Lovtsyus, A.V., et al., 1st Annual Symp. on Safeguards and Nuclear Material Management, Brussels (Belgium), 1979, pp. 173–180.

  17. Meek, M. and Rider, B., Compilation of Fission Product Yields, NEDO-12154-1, 1974.

  18. Gabeskiriya, V.Ya., et al., At. Energ., 1977, vol. 43, no. 4, pp. 278.

    Google Scholar 

  19. Korenkov, A.G., Makarova, T.P., Stepanov, A.V., et al., At. Energ., 2002, vol. 93, no. 4, p. 278.

    Google Scholar 

  20. Bibichev, B.A., Kruglov, V.P., Maiorov, V.P., et al., At. Energ., 1982, vol. 53, no. 4, pp. 222–224.

    CAS  Google Scholar 

  21. Burlakov, E.V., Tataurov, A.L., Kvator V.M., et al., Nuclide Composition of Samples of Spent Fuel from RBMK-1000: Experiments and Calculations, Preprint of Kurchatov Inst., Moscow, 2003, no. IAE-6266/3.

  22. Pazukhin, E.M., Makarova, T.P., Stepanov, A.V., and Belyaev, B.N., Radiokhimiya, 2000, vol. 42, no. 6, pp. 527–532.

    Google Scholar 

  23. Bibichev, B.A., Maiorov, V.P., Protasenko, Yu.M., et al., At. Energ., 1988, vol. 64, no. 2, pp. 147–149.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.P. Makarova, B.A. Bibichev, V.D. Domkin, 2008, published in Radiokhimiya, 2008, Vol. 50, No. 4, pp. 361–370.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarova, T.P., Bibichev, B.A. & Domkin, V.D. Destructive analysis of the nuclide composition of spent fuel of WWER-440, WWER-1000, and RBMK-1000 reactors. Radiochemistry 50, 414–426 (2008). https://doi.org/10.1134/S1066362208040152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362208040152

PACS numbers

Navigation