Skip to main content
Log in

Behavior of ionic and colloid forms of microelements in colloidal chemical extraction from humic acid solutions

  • Published:
Radiochemistry Aims and scope

Abstract

Speciation and extractability of humic acids (HAs) and humate complexes of microelements are studied using the colloidal chemical extraction method in combination with ICP MS with an example of natural mineral water with high HA concentration (800–1200 mg l−1) collected from the Salekhard region. Joint extraction behavior of ionic and colloid forms of anionic and cationic species of a large number of microelements, including U(VI) and Th(IV), and HAs is examined at their natural abundance in mineral water, as influenced by pH and HA concentration. Humic acids proved to behave in natural water as a pool of ion-colloidal species, whose protonation results in precipitation at pH 2.0–3.5. In this case, some chemical elements are sorbed on the resulting solid and may be separated along with HAs by colloidal chemical extraction into isobutanol. In natural humate solutions, a considerable fraction (10–99 mol %) of chemical elements is associated with HAs in the form of colloid species extractable with isobutanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Starik, I.E., Osnovy radiokhimii (Principles of Radiochemistry), Leningrad, 1969.

  2. Myasoedov, B.F., Novikov, A.P., and Pavlotskaya, F.I., Zh. Anal. Khim., 1996, vol. 51, p. 124.

    Google Scholar 

  3. Polyakov, E.V. and Egorov, Yu.V., Usp. Khim., 2003, vol. 72, no. 11, pp. 1103–1114.

    Google Scholar 

  4. Armon, R., Zolkov, Ch., and Laor, Y., J. Sol-Gel Sci. Technol., 2000, vol. 19, pp. 95–100.

    Article  CAS  Google Scholar 

  5. Davis, C.J., Eschenazi, E., and Papadopulos, K.D., Colloid Polym. Sci., 2000, vol. 280, pp. 52–58.

    Article  Google Scholar 

  6. Acid-Base Properties and Aggregation of Humic Materials, Diss. Abstr. Int. Chem. Inorg., 2001, no. 0488.

  7. Fukushima, M., Tanaka, S., Nakamura, H., and Ito, S., Talanta, 1996, vol. 42, pp. 383–390.

    Article  Google Scholar 

  8. Seki, H. and Suzuki, A., J. Colloid Interface Sci., 1995, vol. 171, pp. 490–494.

    Article  CAS  Google Scholar 

  9. Tao, Z.Y., Guo, Zh.J., and Dong, W.M., J. Radioanal. Nucl. Chem., 2003, vol. 256, no. 3, pp. 575–580.

    Article  CAS  Google Scholar 

  10. Christensen, J.B., Jensen, D.L., Gron, Ch., et al., Water Res., 1998, vol. 32, no. 1, pp. 125–135.

    Article  CAS  Google Scholar 

  11. Dula, A., Atitaya, S., and Barnesb, R.M., J. Anal. At. Spectrom., 2001, vol. 16, pp. 978–986.

    Article  Google Scholar 

  12. Burba, P., Bergh, J. van den, and Klockow, D., Fresenius J. Anal. Chem., 2001, vol. 371, pp. 660–669.

    Article  CAS  Google Scholar 

  13. Hammock, D., Huang, C.C., Mort, G., and Swinehart, J.H., Arch. Environ. Contam. Toxicol., 2003, vol. 44, pp. 83–88.

    Article  CAS  Google Scholar 

  14. Vogl, J. and Heumann, K.G., Fresenius J. Anal. Chem., 1997, vol. 359, pp. 438–441.

    Article  CAS  Google Scholar 

  15. Niessner, G., Buchberger, W., and Bonn, G.K., Monatsh. Chem., 1998, vol. 129, pp. 597–605.

    CAS  Google Scholar 

  16. Ozaki, T., Ambe, S., Abe, T., and Arokiasamy, J.F., Anal. Bioanal. Chem., 2003, vol. 375, pp. 505–510.

    CAS  Google Scholar 

  17. Lenhart, J.J., Cabaniss, S.E., MacCarthy, P., and Honeyman, B.D., Radiochim. Acta, 2000, vol. 88, pp. 345–353.

    Article  CAS  Google Scholar 

  18. Nash, K., Fried, Sh., Friedman, A.M., and Sullivan, J.C., Environ. Sci. Technol., 1981, vol. 15, no. 7, p. 835.

    Article  Google Scholar 

  19. Banik, N.L., Kratz, J.V., Kuczewski, B., and Trautmann, N., Year Report, Mainz (Germany): Inst. für Kernchemie, Johannes Gutenberg-Universität, 2004.

  20. El-Naggar, H.A., Ezz El-Din, M.R., and Sheha, R.R., J. Radioanal. Nucl. Chem., 2000, vol. 246, no. 3, pp. 493–504.

    Article  CAS  Google Scholar 

  21. Nagao, S., Fujitake, N., Kodama, H., et al., J. Radioanal. Chem., 2003, vol. 255, no. 3, pp. 459–464.

    Article  CAS  Google Scholar 

  22. Sakuragi, T., Sawa, S., Sato, S., et al., J. Radioanal. Nucl. Chem., 2004, vol. 261, no. 2, pp. 309–314.

    Article  CAS  Google Scholar 

  23. Paulenova, A., Rajec, P., Kandrac, J., et al., J. Radioanal. Nucl. Chem., 2000, vol. 246, no. 3, pp. 617–622.

    Article  CAS  Google Scholar 

  24. Wang Xiangke, Dong Wenming, Gong Yingchun, et al., J. Radioanal. Nucl. Chem., 2001, vol. 250, no. 2, pp. 267–270.

    Article  CAS  Google Scholar 

  25. Benes, P., Stamberg, K., Vopalka, D., et al., J. Radioanal. Nucl. Chem., 2003, vol. 256, no. 3, pp. 465–472.

    Article  CAS  Google Scholar 

  26. Stamberg, K., Benes, P., Mizera, J., et al., J. Radioanal. Nucl. Chem., 2003, vol. 258, no. 2, pp. 329–345.

    Article  CAS  Google Scholar 

  27. Stong-Hoon Yoon, Chung-Hak Lee, Kyu-Jin Kim, and Fane, A.G., Water Res., 1998, vol. 32, no. 7, pp. 2180–2186.

    Article  Google Scholar 

  28. Compton, R.G. and Sanders, G.H. W., J. Colloid Interface Sci., 1993, vol. 158, pp. 439–445.

    Article  CAS  Google Scholar 

  29. Pefferkorn, E., Widmaier, J., and Elfarissi, F., Colloid Polym. Sci., 2001, vol. 279, pp. 493–497.

    Article  CAS  Google Scholar 

  30. Tombacz, E., Dobos, A., Szekeres, M., et al., Colloid Polym. Sci., 2000, vol. 278, pp. 337–345.

    Article  CAS  Google Scholar 

  31. Xiangke Wang, Rabung, Th., and Geckeis, H., J. Radioanal. Nucl. Chem., 2003, vol. 258, no. 1, pp. 83–87.

    Article  Google Scholar 

  32. Davis, A.P. and Bhatnagar, V., Chemosphere, 1995, vol. 30, no. 2, pp. 243–256.

    Article  CAS  Google Scholar 

  33. Liu, A. and Gonzalez, R.D., J. Colloid Interf. Sci., 1999, vol. 218, pp. 225–232.

    Article  CAS  Google Scholar 

  34. Tochiyama, O., Niibori, Y., Tanaka, K., et al., Radiochim. Acta, 2004, vol. 92, nos. 9–11, pp. 559–565.

    Article  CAS  Google Scholar 

  35. Mercier, F., Moulin, V., Barré, N., et al., Anal. Chim. Acta., 2001, vol. 427, pp. 101–110.

    Article  CAS  Google Scholar 

  36. Polyakov, E.V., Reaktsii ionno-kolloidnykh form sostoyaniya mikrokomponentov i radionuklidov v vodnykh rastvorakh (Reactions of Ion-Colloid Species of Microcomponents and Radionuclides in Aqueous Solutions), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2003.

    Google Scholar 

  37. Polyakov, E.V., Radiokhimiya, 2000, vol. 42, no. 5, pp. 423–426.

    Google Scholar 

  38. Polyakov, E.V., Il’ves, G.N., and Surikov, V.T., Radiokhimiya, 2000, vol. 42, no. 5, pp. 427–430.

    Google Scholar 

  39. Polyakov, E.V., Il’ves, G.N., and Surikov, V.T., Radiokhimiya, 2003, vol. 45, no. 5, pp. 456–460.

    Google Scholar 

  40. Polyakov, E.V., Surikov, V.T., Emel’yanova, N.N., et al., Abstracts of Papers, Chetvertaya Rossiiskaya konferentsiya po radiokhimii (Fourth Russian Conf. on Radiochemistry), Ozersk: Tsentr. Zavod. Lab. Fed. Gos. Unit. Predpr. PO Mayak, October 20–25, 2003, p. 264.

    Google Scholar 

  41. Zhernakova, Z.M., Issledovanie ionnogo sostava, organicheskikh veshchestv podzemnoi vody skvazhiny 36-RE i provedenie biologicheskikh issledovanii: Otchet po NIR. Otdel kurortnykh resursov Ekaterinburgskogo meditsinskogo nauchnogo tsentra profilaktiki i okhrany rabochikh promyshlennykh predpriyatii, Poluiskaya kompleksnaya geologorazvedochnaya ekspeditsiya (Ion Composition of Organic Matter of Underground Water from Well no. 36-RE and Bioassay: Scientific Report. Department of Balneoresources, Yekaterinburg Medical Science Center for Preventive Measures and Health Protection of Industrial Workers. Poluisk Complex Geological Exploration Expedition), Yekaterinburg: Ekaterinburg. Med. Nauchn. Tsentr, 1991–1992.

  42. Metody analiza organicheskikh veshchestv podzemnykh vod: Metodicheskie ukazaniya (Methods for Analysis of Organic Matter of Underground Waters: A Methodical Guideline), Bunakova, G.V., Ed., Pyatigorsk: Pyatigorsk. Gos. Inst. Kurortologii i Fizioterapii, 1969.

    Google Scholar 

  43. Fomin, G.S., Voda. Kontrol’ khimicheskoi, bakterial’noi i radiatsionnoi bezopasnosti po mezhdunarodnym standartam: Entsiklopedicheskii spravochnik (Water. Control of Chemical, Bacterial, and Radiation Safety According to International Standards: An Encyclopedic Handbook), Moscow: Protektor, 1993.

    Google Scholar 

  44. Lur’e, Yu.Yu., Unifitsirovannye metody analiza vod (Unified Methods for Water Analysis), Moscow: Khimiya, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.V. Polyakov, 2007, published in Radiokhimiya, 2007, Vol. 49, No. 4, pp. 378–384.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyakov, E.V. Behavior of ionic and colloid forms of microelements in colloidal chemical extraction from humic acid solutions. Radiochemistry 49, 432–438 (2007). https://doi.org/10.1134/S1066362207040194

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362207040194

PACS numbers

Navigation