Skip to main content
Log in

Two-Stage Algorithm for Estimation of Nonlinear Functions of State Vector in Linear Gaussian Continuous Dynamical Systems

  • CONTROL IN STOCHASTIC SYSTEMS AND UNDER UNCERTAINTY CONDITIONS
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

This paper focuses on the optimal minimum mean square error estimation of a nonlinear function of state (NFS) in linear Gaussian continuous-time stochastic systems. The NFS represents a multivariate function of state variables which carries useful information of a target system for control. The main idea of the proposed optimal estimation algorithm includes two stages: the optimal Kalman estimate of a state vector computed at the first stage is nonlinearly transformed at the second stage based on the NFS and the minimum mean square error (MMSE) criterion. Some challenging theoretical aspects of analytic calculation of the optimal MMSE estimate are solved by usage of the multivariate Gaussian integrals for the special NFS such as the Euclidean norm, maximum and absolute value. The polynomial functions are studied in detail. In this case the polynomial MMSE estimator has a simple closed form and it is easy to implement in practice. We derive effective matrix formulas for the true mean square error of the optimal and suboptimal quadratic estimators. The obtained results we demonstrate on theoretical and practical examples with different types of NFS. Comparison analysis of the optimal and suboptimal nonlinear estimators is presented. The subsequent application of the proposed estimators demonstrates their effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. Davari and A. Gholami, “An asynchronous adaptive direct kalman filter algorithm to improve underwater navigation system performance,” IEEE Sens. J. 17, 1061–1068 (2017).

    Article  Google Scholar 

  2. T. Rajaram, J. M. Reddy, and Y. Xu, “Kalman filter based detection and mitigation of subsynchronous resonance with SSSC,” IEEE Trans. Power Syst. 32, 1400–1409 (2017).

    Article  Google Scholar 

  3. X. Deng and Z. Zhang, “Automatic multihorizons recognition for seismic data based on Kalman filter tracker,” IEEE Geosci. Remote Sensing Lett. 14, 319–323 (2017).

    Article  Google Scholar 

  4. M. S. Grewal, A. P. Andrews, and C. G. Bartone, Global Navigation Satellite Systems, Inertial Navigation, and Integration (Wiley, NJ, 2013).

    Google Scholar 

  5. D. Simon, Optimal State Estimation (Wiley, NJ, 2006).

    Book  Google Scholar 

  6. Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation (Wiley, New York, 2001).

    Book  Google Scholar 

  7. V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1989).

    Book  Google Scholar 

  8. T. T. Cai and M. G. Low, “Optimal adaptive estimation of a quadratic functional,” Ann. Stat. 34, 2298–2325 (2006).

    Article  MathSciNet  Google Scholar 

  9. J. Robins, L. Li, E. Tchetgen, and A. Vaart, “Higher order infuence functions and minimax estimation of nonlinear functionals,” Prob. Stat. 2, 335–421 (2008).

    MATH  Google Scholar 

  10. J. Jiao, K. Venkat, Y. Han, and T. Weissman, “Minimax estimation of functionals of discrete distributions,” IEEE Trans. Inform. Theory 61, 2835–2885 (2015).

    Article  MathSciNet  Google Scholar 

  11. J. Jiao, K. Venkat, Y. Han, and T. Weissman, “Maximum likelihood estimation of functionals of discrete distributions,” IEEE Trans. Inform. Theory 63, 6774–6798 (2017).

    Article  MathSciNet  Google Scholar 

  12. Y. Amemiya and W. A. Fuller, “Estimation for the nonlinear functional relationship,” Ann. Stat. 16, 147–160 (1988).

    Article  MathSciNet  Google Scholar 

  13. D. L. Donoho and M. Nussbaum, “Minimax quadratic estimation of a quadratic functional,” J. Complexity 6, 290–323 (1990).

    Article  MathSciNet  Google Scholar 

  14. D. S. Grebenkov, “Optimal and suboptimal quadratic forms for noncentered gaussian processes,” Phys. Rev. E88, 032140 (2013).

    Article  Google Scholar 

  15. B. Laurent and P. Massart, “Adaptive estimation of a quadratic functional by model selection,” Ann. Stat. 28, 1302–1338 (2000).

    Article  MathSciNet  Google Scholar 

  16. I. G. Vladimirov and I. R. Petersen, “Directly coupled observers for quantum harmonic oscillators with discounted mean square cost functionals and penalized back-action,” in Proceedings of the IEEE Conference on Norbert Wiener in the 21st Century, Melbourne, Australia,2016, pp. 78–83.

  17. K. Sricharan, R. Raich, and A. O. Hero, “Estimation of nonlinear functionals of densities with confidence,” IEEE Trans. Inform. Theory 58, 4135–4159 (2012).

    Article  MathSciNet  Google Scholar 

  18. A. Wisler, V. Berisha, A. Spanias, and A. O. Hero, “Direct estimation of density functionals using a polynomial basis,” IEEE Trans. Signal Process. 66, 558–588 (2018).

    Article  MathSciNet  Google Scholar 

  19. M. Taniguchi, “On estimation of parameters of gaussian stationary processes,” J. Appl. Prob. 16, 575–591 (1979).

    Article  MathSciNet  Google Scholar 

  20. C. Zhao-Guo and E. J. Hanman, “The distribution of periodogram ordinates,” J. Time Ser. Anal. 1, 73–82 (1980).

    Article  MathSciNet  Google Scholar 

  21. D. Janas and R. Sachs, “Consistency for non-linear functions of the periodogram of tapered data,” J. Time Ser. Anal. 16, 585–606 (1995).

    Article  MathSciNet  Google Scholar 

  22. G. Fay, E. Moulines, and P. Soulier, “Nonlinear functionals of the periodogram,” J. Time Ser. Anal. 23, 523–553 (2002).

    Article  MathSciNet  Google Scholar 

  23. C. Noviello, G. Fornaro, P. Braca, and M. Martorella, “Fast and accurate ISAR focusing based on a doppler parameter estimation algorithm,” IEEE Geosci. Remote Sens. Lett. 14, 349–353 (2017).

    Article  Google Scholar 

  24. Y. Wu and P. Yang, “Minimax rates of entropy estimation on large alphabets via best polynomial approximation,” IEEE Trans. Inform. Theory 62, 3702–3720 (2016).

    Article  MathSciNet  Google Scholar 

  25. Y. Wu and P. Yang, “Optimal entropy estimation on large alphabets via best polynomial approximation,” in Proceedings of the IEEE International Symposium on Information Theory, Hong Kong,2015, pp. 824–828.

  26. S. O. Haykin, Adaptive Filtering (Prentice Hall, NJ, 2013).

    MATH  Google Scholar 

  27. T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing (Prentice Hall, NJ, 2000).

    Google Scholar 

  28. A. Coluccia, “On the expected value and higher-order moments of the euclidean norm for elliptical normal variates,” IEEE Commun. Lett. 17, 2364–2367 (2013).

    Article  Google Scholar 

  29. S. Nadarajah and S. Kotz, “Exact distribution of the max/Min of two gaussian random variables,” IEEE Trans. Very Large Scale Integr. Syst. 16, 210–212 (2008).

    Article  Google Scholar 

  30. V. S. Pugachev and I. N. Sinitsyn, Stochastic Differential Systems. Analysis and Filtering, 2nd ed. (Nauka, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  31. V. S. Pugachev, “Assessment of the state and parameters of continuous nonlinear systems,” Avtom. Telemekh., No. 6, 63–79 (1979).

  32. E. A. Rudenko, “Optimal structure of continuous nonlinear reduced-order Pugachev filter,” J. Comput. Syst. Sci. Int. 52, 866 (2013).

    Article  MathSciNet  Google Scholar 

  33. S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proc. IEEE 92, 401–422 (2004).

    Article  Google Scholar 

  34. K. Ito and K. Xiong, “Gaussian filters for nonlinear filtering problems,” IEEE Trans. Autom. Control 45, 910–927 (2000).

    Article  MathSciNet  Google Scholar 

  35. A. Doucet, N. D. Freitas, and N. Gordon, Sequential Monte Carlo Methods in Practice (Springer, London, 2001).

    Book  Google Scholar 

  36. E. S. Armstrong and J. S. Tripp, “An application of multivariable design techniques to the control of the national transonic facility,” NASA Technical Paper, No. 1887 (NASA, Washington, DC, 1981), pp. 1–36.

    Google Scholar 

  37. R. Kan, “From moments of sum to moments of product,” J. Multivar. Anal. 99, 542–554 (2008).

    Article  MathSciNet  Google Scholar 

  38. B. Holmquist, “Expectations of products of quadratic forms in normal variables,” Stoch. Anal. Appl. 14, 149–164 (1996).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Won Choi, Il Young Song or Vladimir Shin.

Additional information

This work was supported by the Incheon National University Research Grant in 2015–2016.

APPENDIX

APPENDIX

Proof of Theorem 1. The derivation of the polynomial estimators (3.2) is based on the Lemma 1.

Lemma 1. Let \(x \in {{\mathbb{R}}^{n}}\) be a Gaussian random vector, \(x \sim \mathbb{N}(\mu ,S)\) and \(A,B \in {{\mathbb{R}}^{{n \times n}}}\) be an arbitrary matrices. Then it holds that

$$\begin{gathered} {\mathbf{E}}(Ax) = A\mu ; \\ {\mathbf{E}}({{x}^{{\text{T}}}}Ax) = {\text{tr}}(AS) + {{\mu }^{{\text{T}}}}A\mu ,\quad A = {{A}^{{\text{T}}}}; \\ {\mathbf{E}}(Ax{{x}^{{\text{T}}}}Bx) = 2ASB\mu + A\mu {{\mu }^{{\text{T}}}}B\mu + A\mu {\text{tr}}(BS); \\ E({{x}^{T}}Ax{{x}^{T}}Bx) = 2tr(ASBS) + 4{{\mu }^{T}}ASB\mu \\ \, + [{\text{tr}}(AS) + {{\mu }^{T}}A\mu {\text{][tr}}(BS) + {{\mu }^{T}}B\mu ],\quad A = {{A}^{{\text{T}}}},\quad B = {{B}^{{\text{T}}}}. \\ \end{gathered} $$
((A.1))

The derivation of the formulas (A.1) is based on their scalar versions given in [37, 38], and standard transformations on random vectors.

This completes the proof of Lemma 1.

Next, replacing in (A.1) an unconditional expectations and covariance by their conditional versions, for example, \(\mu \to {\mathbf{E}}(x {\text{|}}{\kern 1pt} y_{0}^{t}) = \hat {x}\), S\({\text{cov(}}\hat {x},\hat {x} {\text{|}}{\kern 1pt} y_{0}^{t}{\text{)}}\) = P we obtain (3.2).

This completes the proof of Theorem 1.

Proof of Theorem 2. The derivation of the MSEs is based on the Lemma 2.

Lemma 2.Let \(X \in {{\mathbb{R}}^{{3n}}}\) be a composite multivariate Gaussian vector, \({{X}^{{\text{T}}}} = [{{U}^{{\text{T}}}}\;{{V}^{T}}\;{{W}^{T}}]\):

$$\begin{gathered} X\sim \mathbb{N}(\mu ,S),\quad U,V,W \in {{\mathbb{R}}^{n}}, \\ \mu = \left[ \begin{gathered} {{\mu }_{u}} \\ {{\mu }_{{v}}} \\ {{\mu }_{w}} \\ \end{gathered} \right],\quad S = \left[ {\begin{array}{*{20}{c}} {{{S}_{{uu}}}}&{{{S}_{{u{v}}}}}&{{{S}_{{uw}}}} \\ {{{S}_{{{v}u}}}}&{{{S}_{{{vv}}}}}&{{{S}_{{{v}w}}}} \\ {{{S}_{{wu}}}}&{{{S}_{{w{v}}}}}&{{{S}_{{ww}}}} \end{array}} \right]. \\ \end{gathered} $$
((A.2))

Then the third- and fourth-order vector moments of the composite random vector are given by

$$\begin{gathered} {\mathbf{E}}({{U}^{{\text{T}}}}VW) = \mu _{u}^{{\text{T}}}{{\mu }_{{v}}}{{\mu }_{w}} + {\text{tr}}({{S}_{{u{v}}}})\mu _{w}^{{\text{T}}} + \mu _{{v}}^{{\text{T}}}{{S}_{{uw}}} + \mu _{u}^{{\text{T}}}{{S}_{{{v}w}}}; \\ {\mathbf{E}}({{U}^{{\text{T}}}}U{{V}^{{\text{T}}}}V) = \mu _{u}^{{\text{T}}}{{\mu }_{u}}\mu _{{v}}^{{\text{T}}}{{\mu }_{{v}}} + 2{\text{tr}}({{S}_{{u{v}}}}{{S}_{{{v}u}}}) + {\text{tr}}({{S}_{{uu}}}){\text{tr}}({{S}_{{{vv}}}}) \\ \, + {\text{tr}}({{S}_{{uu}}})\mu _{{v}}^{{\text{T}}}{{\mu }_{{v}}} + {\text{tr}}({{S}_{{{vv}}}})\mu _{u}^{{\text{T}}}{{\mu }_{u}} + 4\mu _{u}^{{\text{T}}}{{S}_{{u{v}}}}{{\mu }_{{v}}}; \\ {\mathbf{E}}({{U}^{{\text{T}}}}V{{V}^{{\text{T}}}}U) = \mu _{u}^{{\text{T}}}{{\mu }_{{v}}}\mu _{{v}}^{{\text{T}}}{{\mu }_{u}} + {\text{tr}}({{S}_{{uu}}}{{S}_{{{vv}}}}) + {\text{tr}}({{S}_{{u{v}}}}){\text{tr}}({{S}_{{{v}u}}}) \\ \, + {\text{tr}}(S_{{u{v}}}^{2}) + \mu _{{v}}^{{\text{T}}}{{S}_{{uu}}}{{\mu }_{{v}}} + \mu _{u}^{{\text{T}}}{{S}_{{{vv}}}}{{\mu }_{u}} + \mu _{u}^{{\text{T}}}{{S}_{{u{v}}}}{{\mu }_{u}} + \mu _{u}^{{\text{T}}}{{S}_{{{v}u}}}{{\mu }_{{v}}} + 2{\text{tr}}({{S}_{{u{v}}}})\mu _{u}^{{\text{T}}}{{\mu }_{{v}}}; \\ {\mathbf{E}}({{U}^{{\text{T}}}}V{{W}^{{\text{T}}}}U) = \mu _{u}^{{\text{T}}}{{\mu }_{{v}}}\mu _{w}^{{\text{T}}}{{\mu }_{u}} + {\text{tr}}({{S}_{{u{v}}}}){\text{tr}}({{S}_{{uw}}}) + {\text{tr}}({{S}_{{uu}}}{{S}_{{w{v}}}}) \\ \, + {\text{tr}}({{S}_{{uw}}}{{S}_{{u{v}}}}) + {\text{tr}}({{S}_{{u{v}}}})\mu _{u}^{{\text{T}}}{{\mu }_{w}} + {\text{tr}}({{S}_{{uw}}})\mu _{u}^{{\text{T}}}{{\mu }_{{v}}} \\ \, + \mu _{{v}}^{{\text{T}}}{{S}_{{uu}}}{{\mu }_{w}} + \mu _{{v}}^{{\text{T}}}{{S}_{{uw}}}{{\mu }_{u}} + \mu _{u}^{{\text{T}}}{{S}_{{{v}u}}}{{\mu }_{w}} + \mu _{u}^{{\text{T}}}{{S}_{{{v}w}}}{{\mu }_{u}}. \\ \end{gathered} $$
((A.3))

The derivation of the vector formulas (A.3) is based on their scalar versions, and standard matrix manipulations,

$$\begin{gathered} {\mathbf{E}}\left( {{{x}_{i}}{{x}_{j}}{{x}_{k}}} \right) = {{\mu }_{i}}{{\mu }_{j}}{{\mu }_{k}} + {{\mu }_{i}}{{S}_{{jk}}} + {{\mu }_{j}}{{S}_{{ik}}} + {{\mu }_{k}}{{S}_{{ij}}};~~~ \\ {\mathbf{E}}\left( {{{x}_{i}}{{x}_{j}}{{x}_{k}}{{x}_{\ell }}} \right) = {{\mu }_{i}}{{\mu }_{j}}{{\mu }_{k}}{{\mu }_{\ell }} + {{S}_{{ij}}}{{S}_{{k\ell }}} + {{S}_{{ik}}}{{S}_{{\ell j}}} + {{S}_{{i\ell }}}{{S}_{{jk}}} + {{\mu }_{i}}{{\mu }_{j}}{{S}_{{k\ell }}} + {{\mu }_{i}}{{\mu }_{k}}{{S}_{{j\ell }}} + {{\mu }_{i}}{{\mu }_{\ell }}{{S}_{{jk}}} \\ \, + \;~{{\mu }_{j}}{{\mu }_{k}}{{S}_{{i\ell }}} + {{\mu }_{j}}{{\mu }_{\ell }}{{S}_{{ik}}} + {{\mu }_{k}}{{\mu }_{\ell }}{{S}_{{ij}}},~ \\ \end{gathered} $$
((A.4))

where \({{\mu }_{h}} = {\mathbf{E}}({{x}_{h}})\), \({{S}_{{pq}}} = {\text{cov(}}{{x}_{p}},{{x}_{q}}{\text{)}}\).

This completes the proof of Lemma 2.

Further, we derive the formula (3.8). Using (3.5) and (3.6), the error can be written as

$$\begin{gathered} {{e}_{z}} = z - \hat {z} = {{x}^{{\text{T}}}}Ax - {\text{tr}}\left( {AP} \right) - {{{\hat {x}}}^{{\text{T}}}}A\hat {x} = {{\left( {e + \hat {x}} \right)}^{{\text{T}}}}A\left( {e + \hat {x}} \right) - {{{\hat {x}}}^{{\text{T}}}}A\hat {x} - {\text{tr}}\left( {AP} \right)~ \\ \; = {{e}^{{\text{T}}}}Ae + 2{{e}^{{\text{T}}}}A\hat {x} - {\text{tr}}\left( {AP} \right),\quad e = x - \hat {x},\quad {{{\hat {x}}}^{{\text{T}}}}Ae = {{e}^{{\text{T}}}}A\hat {x}. \\ \end{gathered} $$
((A.5))

Next, using the unbiased and orthogonality properties of the Kalman estimate \({\mathbf{E}}\left( e \right) = {\mathbf{E}}(e{{\hat {x}}^{{\text{T}}}}) = 0,\) we obtain

$$\begin{gathered} P_{z}^{{{\text{opt}}}} = {\mathbf{E}}({{e}^{{\text{T}}}}Ae{{e}^{{\text{T}}}}Ae) + 2{\mathbf{E}}({{e}^{{\text{T}}}}A\hat {x}{{e}^{{\text{T}}}}Ae) \\ \, - {\text{tr}}(AP){\mathbf{E}}({{e}^{{\text{T}}}}Ae) + 2{\mathbf{E}}({{e}^{{\text{T}}}}Ae{{e}^{{\text{T}}}}A\hat {x}) \\ \, + 4{\mathbf{E}}({{e}^{{\text{T}}}}A\hat {x}{{e}^{{\text{T}}}}A\hat {x}) - 2{\text{tr}}(AP){\mathbf{E}}({{e}^{{\text{T}}}}A\hat {x}) \\ \, - {\text{tr}}(AP){\mathbf{E}}({{e}^{{\text{T}}}}Ae) - 2{\text{tr}}(AP){\mathbf{E}}({{e}^{{\text{T}}}}A\hat {x}) + {\text{t}}{{{\text{r}}}^{2}}(AP). \\ \end{gathered} $$
((A.6))

Using Lemma 2 we can calculate high-order moments in (A.6). We have

$$\begin{gathered} {\mathbf{E}}({{e}^{{\text{T}}}}Ae) = {\text{tr}}\left( {AP} \right),~~~{\mathbf{E}}({{e}^{{\text{T}}}}A\hat {x}) = 0,\quad {\mathbf{E}}({{e}^{{\text{T}}}}Ae{{e}^{{\text{T}}}}Ae) = {\text{t}}{{{\text{r}}}^{2}}\left( {AP} \right) + 2{\text{tr}}\left( {APAP} \right), \\ {\mathbf{E}}({{e}^{{\text{T}}}}A\hat {x}{{e}^{{\text{T}}}}Ae) = {\mathbf{E}}({{e}^{{\text{T}}}}Ae{{e}^{{\text{T}}}}A\hat {x}) = 0,\quad {\mathbf{E}}({{e}^{{\text{T}}}}A\hat {x}{{e}^{{\text{T}}}}A\hat {x}) = {\mathbf{E}}({{e}^{{\text{T}}}}A\hat {x}{{{\hat {x}}}^{{\text{T}}}}Ae) = {\text{tr}}\left( {PA{{C}_{{\hat {x}\hat {x}}}}A} \right) + {{\mu }^{{\text{T}}}}AP\mu , \\ \end{gathered} $$
((A.7))

where

$$\begin{gathered} \mu = {\mathbf{E}}\left( x \right) = {\mathbf{E}}\left( {\hat {x}} \right),\quad {\text{cov}}\left( {Ae,Ae} \right) = AP{{A}^{{\text{T}}}}, \\ {{C}_{{\hat {x}\hat {x}}}} = C - P,~~~P = {\text{cov}}\left( {e,e} \right),\quad C = {\text{cov}}\left( {x,x} \right). \\ \end{gathered} $$
((A.8))

Substituting (A.7) in (A.6), and after some manipulations, we get the optimal MSE (3.8).

In the case of the suboptimal estimate \(\tilde {z},\) the derivation of the MSE (3.9) is similar.

This completes the proof of Theorem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, W., Song, I.Y. & Shin, V. Two-Stage Algorithm for Estimation of Nonlinear Functions of State Vector in Linear Gaussian Continuous Dynamical Systems. J. Comput. Syst. Sci. Int. 58, 869–882 (2019). https://doi.org/10.1134/S1064230719060169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230719060169

Navigation