Skip to main content
Log in

Method to Construct Periodic Solutions of Controlled Second-Order Dynamical Systems

  • STABILITY
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

Nonconservative mechanical systems with one degree of freedom are considered. The goal is to provide the existence of steady-state oscillations with the prescribed properties. The system’s behavior is modeled by a second-order autonomous dynamical system with one variable parameter describing the amplifying coefficient of the control action. A numerical-analytic method to find the amplifying coefficient is proposed. Conditions of the orbital stability are obtained for the steady-state oscillations. An example of the application of the method is provided. The proposed approach can be applied to solve control problems and to find periodic solutions of second-order autonomous dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. D. Morozov and O. S. Kostromina, “On periodic perturbations of asymmetric duffing-Van-Der-Pol equation,” Int. J. Bifurc. Chaos 24, 1450061 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Klimina, “Dynamics of a slider-crank wave-type wind turbine,” in Proceedings of the 14th IFToMM World Congress, Taipei, 2015, pp. 582–588.

  3. M. Dosaev, L. Klimina, and Y. Selyutskiy, “Wind turbine based on antiparallel link mechanism,” in New Trends in Mechanism and Machine Science (Springer, New York, 2017), pp. 543–550.

    Google Scholar 

  4. A. B. Rostami and A. C. Fernandes, “Mathematical model and stability analysis of fluttering and autorotation of an articulated plate into a flow,” Commun. Nonlin. Sci. Numer. Simul. 56, 544–560 (2018).

    Article  MathSciNet  Google Scholar 

  5. R. E. Seifullaev, A. Fradkov, and D. Liberzon, “Energy control of a pendulum with quantized feedback,” Automatica 67, 171–177 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. M. Tusset, F. C. Janzen, V. Piccirillo, R. T. Rocha, J. M. Balthazar, and G. Litak, “On nonlinear dynamics of a parametrically excited pendulum using both active control and passive rotational (MR) damper,” J. Vibrat. Control 24, 1587–1599 (2018).

    Article  MathSciNet  Google Scholar 

  7. C. Chen, D. H. Zanette, J. R. Guest, D. A. Czaplewski, and D. Lopez, “Self-sustained micromechanical oscillator with linear feedback,” Phys. Rev. Lett. 117, 017203 (2016).

    Article  Google Scholar 

  8. V. N. Tkhai, “Stabilizing the oscillations of an autonomous system,” Autom. Remote Control 77, 972 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  9. O. E. Vasyukova and L. A. Klimina, “Modeling of self-oscillations of a controlled physical pendulum, taking into account the dependence of the friction moment on the normal reaction in the hinge,” Nelin. Dinam. 14 (1), 33–44 (2018).

    Article  MATH  Google Scholar 

  10. A. L. Fradkov and B. R. Andrievsky, “Passification-based robust flight control design,” Automatica 47, 2743–2748 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  11. J. L. P. Felix, J. M. Balthazar, and R. M. Brasil, “On saturation control of a non-ideal vibrating portal frame foundation type shear-building,” J. Vibrat. Control 11, 121–136 (2005).

    Article  MATH  Google Scholar 

  12. L. S. Pontryagin, “On dynamical systems close to Hamiltonian systems,” J. of Experimental and Theoretical Physics 4(9), 883–885 (1934). (1934).

  13. N. N. Bolotnik, I. M. Zeidis, K. Zimmermann, and S. F. Yatsun, “Dynamics of controlled motion of vibration-driven systems,” J. Comput. Syst. Sci. Int. 45, 831 (2006).

    Article  MATH  Google Scholar 

  14. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations (Nauka, Moscow, 1958) [in Russian].

    MATH  Google Scholar 

  15. A. M. Samoilenko, “Numerical analytical method of investigating periodic systems of ordinary differential equations. I,” Ukr. Mat. Zh. 17 (4), 82–93 (1965).

    Article  Google Scholar 

  16. N. I. Ronto, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: Achievements and new trends of development. IV,” Ukr. Mat. Zh. 50, 1656–1672 (1998).

    MATH  Google Scholar 

  17. A. Buonomo and A. L. Schiavo, “A constructive method for finding the periodic response of nonlinear circuits,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 50, 885–893 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  18. V. O. Bragin, V. I. Vagaitsev, N. V. Kuznetsov, and G. A. Leonov, “Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits,” J. Comput. Syst. Sci. Int. 50, 511 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  19. L. A. Klimina, “Method for Finding Periodic Trajectories of Centrally Symmetric Dynamical Systems on the Plane,” Differential Equations, 55(2), 159–168 (2019).

  20. N. N. Bautin and E. A. Leontovich, Methods and Techniques for Qualitative Research of Dynamic Systems on the Plane (Nauka, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  21. V. A. Samsonov, M. Z. Dosaev, and Y. D. Selyutskiy, “Methods of qualitative analysis in the problem of rigid body motion in medium,” Int. J. Bifurcat. Chaos 21, 2955–2961 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. C. Fernandes and A. B. Rostami, “Hydrokinetic energy harvesting by an innovative vertical axis current turbine,” Renewable Energy 81, 694–706 (2015).

    Article  Google Scholar 

  23. M. Berci and G. Dimitriadis, “A combined multiple time scales and harmonic balance approach for the transient and steady-state response of nonlinear aeroelastic systems,” J. Fluids Struct. 80, 132–144 (2018).

    Article  Google Scholar 

  24. A. M. Formalskii, Stabilization and Motion Control of Unstable Objects (Walter de Gruyter Berlin, Boston, 2015).

    Book  MATH  Google Scholar 

  25. M. Z. Dosaev, V. A. Samsonov, and Yu. D. Selyutskii, Yu. D. Seliutski, “On the dynamics of a small-scale wind power generator,” Doklady Physics, 52(9), 493-495 (2007).

  26. M. Z. Dosaev, C. H. Lin, W. L. Lu, V. A. Samsonov, and Y. D. Selyutskii, “A qualitative analysis of the steady modes of operation of small wind power generators,” J. Appl. Math. Mech., 73(3), 259–263 (2009).

  27. L. Klimina and B. Lokshin, “Construction of bifurcation diagrams of periodic motions of an aerodynamic pendulum via the method of iterative averaging,” in Proceedings of the 14th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference) STAB2018 (IEEE, Moscow, 2018), pp. 1–3.

Download references

ACKNOWLEDGMENTS

This work was supported by Russian Foundation for Basic Research, project nos. 18-31-20029 and 17-08-01366.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Klimina.

Additional information

Translated by A. Muravnik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimina, L.A., Selyutskiy, Y.D. Method to Construct Periodic Solutions of Controlled Second-Order Dynamical Systems. J. Comput. Syst. Sci. Int. 58, 503–514 (2019). https://doi.org/10.1134/S1064230719030109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230719030109

Navigation