Robust control of electric generator with compensation of perturbations

  • I. B. Furtat
Control Systems for Technological Processes


The problem of robust control of an electric generator with respect to relative speed is considered; the mathematical model of this generator is a system of third-order differential algebraic equations with a priori unknown parameters. The control algorithm ensuring the generator synchronization with the required precision is obtained. The results are illustrated by a numerical example.


Robust Control System Science International Relative Speed Differential Algebraic Equation Power Supply System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. R. Bergan, Power Systems Analysis (Prentice Hall, New Jersey, 1986).Google Scholar
  2. 2.
    M. A. Pai, Power System Stability (North Holland, New York, 1981).MATHGoogle Scholar
  3. 3.
    P. M. Anderson and A. A. Fouad, Power System Control and Stability (Iowa State University Press, Iowa, 1977).Google Scholar
  4. 4.
    Y. Wang, L. Xie, D. J. Hill, and R. H. Middleton, “Robust Nonlinear Controller Design for Transient Stability Enhancement of Power Systems,” in Proc. of the 31st Conference on Decision and Control, Arizona, 1992, pp. 1117–1122.Google Scholar
  5. 5.
    Y. Guo, D. J. Hill, and Y. Wang, “Global Transient Stability and Voltage Regulation for Power Systems,” IEEE Trans. Power Syst. 16, 678–688 (2001).CrossRefGoogle Scholar
  6. 6.
    G. M. Pavlov and G. V. Merkur’ev, Automation of Power Systems (Izd. Tsentra podgotovki kadrov RAO “EES Rossii”, St. Petersburg, 2001) [in Russian].Google Scholar
  7. 7.
    Z. Qu, J. F. Dorsey, J. Bond, and J. D. McCalley, “Application of Robust Control to Sustained Oscillation in Power Systems,” IEEE Trans. Circuits Syst. I. Fundamental Theory Appl. 39, 470–476 (1992).CrossRefGoogle Scholar
  8. 8.
    A. Astolfi, M. Galaz, R. Ortega, et al., “Transient Stabilization of Multimachine Power Systems with Nontrivial Transfer Conductance,” IEEE Trans. Automatic Control 50, 60–75 (2005).MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. A. Kuz’menko, “Nonlinear Adaptive Control of a Turbogenerator”, J. Comput. Syst. Sci. Int. 47, 103–110 (2008).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    V. N. Kozlov and V. N. Shashikhin, “Synthesis of Coordinating Robust Control of Interconnected Synchronous Generators,” Elektrichestvo, No. 9, 20–26 (2009).Google Scholar
  11. 11.
    A. A. Kolesnikov, Synergetic Control Theory (Energoatomizdat, Moscow, 1994) [in Russian].Google Scholar
  12. 12.
    A. M. Tsykunov, “Robust Control Algorithms with Compensation of Bounded Perturbations,” Autom. Remote Control 68, 1213–1224 (2007).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    I. B. Furtat and A. M. Tsykunov, “Robust Control of Nonstationary Nonlinear Structurally Uncertain Objects,” Problemy Upravlen., No. 5, 2–7 (2008).Google Scholar
  14. 14.
    A. N. Atassi and H. K. Khalil, “A Separation Principle for the Stabilization of Class of Nonlinear Systems,” IEEE Trans. Autom. Control. 44, 1672–1687 (1999).MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    V. A. Brusin, “One Class of Singularly Perturbed Adaptive Systems. I,” Avtom. Telemekh., No. 4, 119–127 (1995).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • I. B. Furtat
    • 1
  1. 1.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations