Skip to main content
Log in

Environmental Conditions of the Study Region. Objects and Methods

  • SOIL SUCCESSIONS IN THE BOREAL FORESTS OF THE KOMI REPUBLIC
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

A general description of the region of research is presented; the features of geomorphology, topography, and prevailing soil-forming rocks are considered in detail. The climatic features of the middle and northern taiga of the European part of Russia are characterized. A brief description of the objects of study (vegetation and soils) with information on the time of impact on ecosystems is given. Abbreviations for the studied plots that are used in further text are explained. The methodological approaches and research methods used in this study are described. The concept of soil successions is introduced. The methods of chemical analysis and soil diagnostics applied in this study are described in detail. The methods of densimetric fractionation, hydrophobic interaction chromatography, and integration of 13C-NMR spectra of soil organic matter are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The Latin names of plants are given according to Plantarium, an open-source online atlas-determinant of plants and lichens in Russia and neighboring countries (2007–2020) (http://www.plantarium.ru).

REFERENCES

  1. V. D. Aleksandrova, “Study of changes in vegetation cover,” in Field Geobotany (Nauka, Moscow–Leningrad, 1964), Vol. 3, pp. 300–447 [in Russian].

  2. B. P. Alisov, Climate of the USSR (Mosk. Gos. Univ., Moscow, 1956) [in Russian].

    Google Scholar 

  3. Atlas of the Komi Republic on Climate and Hydrology (Drofa, Moscow, 1997).

  4. Atlas of the Komi Republic (Feoriya, Moscow, 2011).

  5. K. S. Bobkova, Biological Productivity of Coniferous Forests in the European Northeast (Nauka, Leningrad, 1987) [in Russian].

    Google Scholar 

  6. L. G. Bogatyrev, “Formation of forest litter as one of the major processes in forest ecosystems,” Eurasian Soil Sci. 29 (4), 459–468 (1996).

    Google Scholar 

  7. L. G. Bogatyrev, Basic Concepts, Laws and Principles of Modern Soil Science (MAKS Press, Moscow, 2015) [in Russian].

    Google Scholar 

  8. L. G. Bogatyrev, “Is the litter an independent biogeocenotic body of nature?,” Ekologiya, No. 6, 13–21 (1990).

    Google Scholar 

  9. A. F. Vadyunina and Z. A. Korchagina, Methods for Studying the Physical Properties of Soils (Agropromizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  10. G. I. Varlamov, “Relief,” in Productive Forces of the Komi ASSR, Vol. 1: Geological Structure and Mineral Resources (Izd. Akad. Nauk ASSR, Moscow, 1953), pp. 9–22 [in Russian].

  11. V. A. Varsanof’eva, “Geomorphology,” in Productive Forces of the Komi ASSR, Vol. 1: Geological Structure and Mineral Resources (Izd. Akad. Nauk ASSR, Moscow, 1953), pp. 257–270 [in Russian].

  12. I. I. Vasenev, Soil Successions (LKI, Moscow, 2008) [in Russian].

    Google Scholar 

  13. I. I. Vasenev and V. O. Targulian, Windfall and Taiga Soil Formation. Regimes, Processes, Morphogenesis of Soil Successions (Nauka, Moscow, 1995) [in Russian].

    Google Scholar 

  14. State Soil Map of Russia (Scale 1 : 1 000 000). Sheet R-40 (Krasnovishersk) (Inst. Biol. Komi Nauchn. Tsentra Ural. Otd. Ross. Akad. Nauk, Syktyvkar, 2005).

  15. State Soil Map of the USSR (Scale 1 : 1 000 000). Sheet R-39 (Syktyvkar) (Izd. Akad. Nauk SSSR, Moscow, 1958).

  16. State Report “On the State of the Environment in the Komi Republic in 2012” (Syktyvkar, 2013).

  17. N. Yu. Grechishcheva, Extended Abstract of Doctoral Dissertation in Chemistry (Ivanovo, 2017).

  18. V. N. Dimo, Thermal Regime of Soils in the USSR (Kolos, Moscow, 1972) [in Russian].

    Google Scholar 

  19. A. A. Dymov, D. N. Gabov, Yu. A. Dubrovskii, E. V. Zhangurov, and N. A. Nizovtsev, “Influence of fire in a northern taiga spruce forest on soil organic matter,” Lesovedenie, No. 1, 52–62 (2015a).

    Google Scholar 

  20. A. A. Dymov, E. M. Lapteva, N. N. Bondarenko, E. Yu. Milanovskii, and Yu. A. Zavgorodnyaya, “Humic substances in soils of lingonberry-green-moss pine forest and derivatives of deciduous-coniferous plantations,” in Ecological Functions of Forest Soils in Natural and Disturbed Landscapes. Proc. 4th All-Russia Sci. Conf. on Forest Soil Science (Apatity, 2011), Part 1, pp. 72–76.

  21. I. V. Zaboeva, Soils and Land Resources of the Komi Republic (Komi Knizhnoe Izd., Syktyvkar, 1975) [in Russian].

    Google Scholar 

  22. F. R. Zaidel’man, Methods of Ecological and Reclamation Surveys and Soil Research (Kolos, Moscow, 2008) [in Russian].

    Google Scholar 

  23. S. V. Zalesov, Forest Pyrology (Ekaterinburg, 1998) [in Russian].

    Google Scholar 

  24. S. V. Il’chukov, Spatial Structure of Primary and Derivative Forests of Taiga Landscapes of the Komi Republic (Ekaterinburg, 2012) [in Russian].

    Google Scholar 

  25. Cadastre of Specially Protected Natural Territories of the Komi Republic, Ed. by S. V. Degteva and V. I. Ponomarev (Syktyvkar, 2014).

    Google Scholar 

  26. G. A. Kalabin, L. V. Kanitskaya, and D. F. Kushnarev, Quantitative NMR Spectroscopy of Natural Organic Raw Materials and Products of Their Processing (Khimiya, Moscow, 2000) [in Russian].

    Google Scholar 

  27. L. O. Karpachevskii, Forest and Forest Soils (Moscow, 1981) [in Russian].

    Google Scholar 

  28. Indigenous Spruce Forests of the North: Biodiversity, Structure, Functions, Ed. by K. S. Bobkova and E. P. Galenko (Nauka, St. Petersburg, 2006) [in Russian].

    Google Scholar 

  29. E. M. Lapteva, V. A. Beznosikov, and E. V. Shamrikova, “Soils and soil resources of the Komi Republic: research stages, results and prospects,” Izv. Komi Nauchn. Tsentra Ural. Otd. Ross. Akad. Nauk, No. 3 (27), 23–34 (2016).

    Google Scholar 

  30. A. A. Larionova, B. N. Zolotareva, Yu. G. Kolyagin, A. K. Kvitkina, V. V. Kaganov, and V. N. Kudeyarov, “Composition of structural fragments and the mineralization rate of organic matter in zonal soils,” Eurasian Soil Sci. 48 (10), 1110–1119 (2015). https://doi.org/10.1134/S1064229315100063

    Article  Google Scholar 

  31. G. M. Kozubov and A. I. Taskaev (eds.), Forests of the Komi Republic (Moscow, 1999) [in Russian].

    Google Scholar 

  32. E. D. Lodygin, V. A. Beznosikov, and R. S. Vasilevich, “Molecular composition of humic substances in tundra soils (13C-NMR spectroscopic study),” Eurasian Soil Sci. 47 (5), 400–406 (2014).

    Article  Google Scholar 

  33. Guidelines for the Destruction of Organic Substances in Natural, Drinking, Waste Water and Food Products on the Minotaur-2 Microwave System (St. Petersburg, 2005) [in Russian].

  34. E. Yu. Milanovskii, Soil Humic Substances as Natural Hydrophobic-Hydrophilic Compounds (GEOS, Moscow, 2009) [in Russian].

    Google Scholar 

  35. B. M. Mirkin and L. G. Naumova, Current State of the Basic Concepts of the Science of Vegetation (Akad. Nauk Resp. Bashkortostan, Gilem, Ufa, 2012) [in Russian].

  36. Explanatory Note to Sheet R-38 “Kotlas” of the State Soil Map of the USSR. 1 : 1 000 000 (Moscow, 1976).

  37. PND F 16.1:2:2.2:3.39-03 Quantitative Chemical Analysis of Soils. Method for Measuring the Mass Fraction of Benzo(a)pyrene in Samples of Soils, Rocks, Solid Wastes, and Bottom Sediments by High-Performance Liquid Chromatography Using a Liquid Chromatograph “Lumakhrom” (OOO Lumeks, Moscow, 2007).

  38. Field Guide on Correlation of Russian Soils (Moscow, 2008) [in Russian].

  39. Scientific Soil Tour Guide. Loamy Podzolic Soils of Clearings of Different Ages (Middle Taiga Subzone) (Syktyvkar, 2007) [in Russian].

  40. L. E. Rodin, N. P. Remezov, and N. I. Bazilevich, Guidelines for the Study of Dynamics and Biological Cycle in Phytocenoses (Nauka, Leningrad, 1968) [in Russian].

    Google Scholar 

  41. E. N. Rudneva, I. V. Zaboeva, and I. S. Urusevskaya, “Soil-geographical zoning of the central and eastern parts of the European territory of the USSR,” in Podzolic Soils of the Central and Eastern Parts of the European Territory of the USSR (Nauka, Leningrad, 1981) [in Russian].

    Google Scholar 

  42. A. V. Smagin, N. B. Sadovnikova, M. V. Smagina, M. V. Glagolev, E. M. Shevchenko, D. D. Khaidapova, and A. K. Guber, Modeling the Dynamics of Soil Organic Matter (Mosk. Gos. Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  43. Theory and Practice of Chemical Analysis of Soils, Ed. by L. A. Vorob’eva (Moscow, 2006) [in Russian].

    Google Scholar 

  44. T. E. Fedorova, D. F. Kushnarev, N. V. Vashukevich, A. G. Proidakov, B. Byambagar, and G. A. Kalabin, “13C-NMR spectroscopy of humic acids of different origins,” Pochvovedenie, No. 10, 1213–1217 (2003).

    Google Scholar 

  45. Yu. P. Yudin, Productive Forces of the Komi ASSR, Vol. 3, Part 1: Plant World (Akad. Nauk SSSR, Moscow, 1954) [in Russian].

  46. J. A. Baldock, J. M. Oades, P. N. Nelson, T. M. Skene, A. Golchin, and P. Clarke, “Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy,” Aust. J. Soil Res. 35, 1061–1083 (1997).

    Article  Google Scholar 

  47. C. Cerli, L. Celi, K. Kalbitz, G. Guggenberger, and K. Kaiser, “Separation of light and heavy organic matter fractions in soil Testing for proper density cut-off and dispersion level,” Geoderma 170, 403–416 (2012). https://doi.org/10.1016/j.geoderma.2011.10.009

    Article  Google Scholar 

  48. C. N. Goncalves, S. D. Dalmolin, D. P. Dick, H. Knicker, E. Klamt, and I. Kogel-Knabner, “The effect of 10% HF treatment on resolution of CPMAS 13C NMR spectra and on the quality of organic matter in Ferralsols,” Geoderma 116, 373–392 (2003).

    Article  Google Scholar 

  49. G. Grunewald, K. Kaiser, R. Jahn, and G. Guggenberger, “Organic matter stabilization in young calcareous soils as revealed by density fractionation and analysis of lignin-derived constituents,” Org. Geochem. 37, 1573–1589 (2006). https://doi.org/10.1016/j.orggeochem.2006.05.002

  50. P. G. Hatcher, M. Schnitzler, L. W. Dennis, and G. E. Maciel, “Aromaticity of humic substances in soils,” Soil Sci. Soc. Am. J. 45, 1089–1094 (1981).

    Article  Google Scholar 

  51. R. Hiederer and M. Köchy, Global Soil Organic Carbon Estimates and the Harmonized World Soil Database (Publications Office of the European Union, 2011).

    Google Scholar 

  52. G. Mastrolonardo, C. Rumpel, C. Forte, S. H. Doerr, and G. Certini, “Abudance and composition of free and aggregate-occluded carbohydrates and lignin in two forest soils as affected by wildfires of different severity,” Geoderma 245–246, 40–51 (2015). https://doi.org/10.1016/j.geoderma.2015.01.006

  53. J. R. Miesel, W. C. Hockaday, and P. A. Townsend, “Soil organic composition and quality across fire severity gradients in coniferous and deciduous forest of the southern boreal region,” J. Geophys. Res. Biogeosci. 120, 1124–1141 (2015). https://doi.org/10.1002/2015JG002959

    Article  Google Scholar 

  54. J. F. Ponge, “Humus forms in terrestrial ecosystems: framework to biodiversity,” Soil Biol. Biochem. 35, 935–945 (2003). https://doi.org/10.1016/S0038-0717(03)00149-4

    Article  Google Scholar 

  55. M. W. I. Schmidt, C. Rumpel, and I. Kögel-Knabner, “Evaluation of an ultrasonic dispersion procedure to isolate primary organomineral complexes from soils,” Eur. J. Soil Sci. 50, 87–94 (1999).

    Article  Google Scholar 

  56. J. Six, P. A. Schultz, J. D. Jastrow, and R. Merck, “Recycling of sodium polytungstate used in soil organic matter studies,” Soil Biol. Biochem. 31, 1193–1196 (1999).https://doi.org/10.1016/S0038-0717(99)00023-1

  57. J. O. Skjemstad, P. Clarke, J. A. Taylor, J. M. Oades, and R. H. Neuman, “The removal of magnetic materials from surface soils - a solid state 13C CP/MAS NMR study,” Aust. J. Soil Res. 32, 1215–1229 (1994). https://doi.org/10.1071/SR9941215

    Article  Google Scholar 

  58. Standard Soil Color Charts (Japan, 1970).

  59. US EPA (United States Environmental Protection Agency). Evaluation and Estimation of Potential Carcinogenic Risks of Polynuclear Aromatic Hydrocarbons: Carcinogen Assessment Group (Office of Heath and Environmental Assessment, Washington DC, 1985).

  60. A. Zanella, B. Jabiol, J. F. Ponge, G. Sartori, R. De Waal, B. Van Delft, U. Graefe, N. Cools, K. Katzensteiner, H. Hage, and M. A. Englisch, “European morphofunctional classification of humus forms,” Geoderma 164, 138–145 (2011). https://doi.org/10.1016/j.geoderma.2011.05.016

    Article  Google Scholar 

Download references

Funding

The work was carried out within the framework of state assignment “Cryogenesis as a Factor of Soil Formation and Evolution in the Arctic and Boreal Ecosystems in the European Northeast under Conditions of Current Anthropogenic Impacts and Global and Regional Climatic Trends” (no. 122040600023-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dymov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by D. Konyushkov

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dymov, A.A. Environmental Conditions of the Study Region. Objects and Methods. Eurasian Soil Sc. 56 (Suppl 1), S24–S35 (2023). https://doi.org/10.1134/S1064229323700187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323700187

Keywords:

Navigation