Skip to main content
Log in

Variation of Soil Erosion Estimates Based on Different Maps of Cropland in Belgorod Oblast, Russia

  • SOIL EROSION
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Current medium- and small-scale estimates of soil erosion in Russia are very few. At the same time, a favorable situation has now developed for assessing the rates and volumes of soil erosion losses. Erosion models adapted to available digital elevation models, various farmland maps, and climate databases are now available to researchers. We have estimated the rates and volumes of soil erosion with the use of different maps of cropland: world cover from the European Space Agency (ESA WC), global land cover and land use from the University of Maryland (GLCLU), the official unified federal information system of agricultural land (UFIS AL) from the Ministry of Agriculture of the Russian Federation, and the original conventionally reference land cover map of Alekseevskii district of Belgorod oblast. It has been found that the UFIS AL map gives cropland areas close to the average from first three maps. Public access maps (ESA WC and GLCLU) give maximum and minimum estimates of cropland, respectively. A comparison with the conventionally reference large-scale map shows that the accuracy of the UFIS AL does not exceed 90%; the accuracy of ESA WC and GLCLU maps is 84 and 83%, respectively. The total area of cropland in Belgorod oblast varies slightly (from 1445 to 1586 thousand hectares), which is favorable for erosion modeling. Deviations from the average rates of soil erosion calculated using different maps of cropland in the region as a whole are up to 7%; for some districts, they reach 27%. Thus, current estimates of soil erosion at the regional level can be carried out with an error of at least 10–15% only as a result of the uncertainty in mapping the boundaries of cropland. For Russia as a whole, data on the area of cropland vary significantly: from 80 to 132 million hectares. Consequently, the use of existing maps of cropland can lead to significant uncertainties in soil erosion estimates averaged at the level of the subjects of the Russian Federation and large regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Database of Municipal Indicators. https://gks.ru/dbscripts/munst/.

  2. S. A. Bartalev, V. A. Egorov, V. Yu. Efremov, E. A. Lupyan, F. V. Stytsenko, and E. V. Flitman, “Estimation of the area of fires based on the integration of satellite data of various spatial resolutions MODIS and Landsat-TM/ETM+,” Sovrem. Probl. Zondirovaniya Zemli Kosmosa 9 (2 (9)), 9–27 (2012).

    Google Scholar 

  3. A. V. Bryzzhev, D. I. Rukhovich, P. V. Koroleva, N. V. Kalinina, E. V. Vil’chevskaya, E. A. Dolinina, and S. V. Rukhovich, “Organization of retrospective monitoring of the soil cover in Azov district of Rostov oblast,” Eurasian Soil Sci. 48 (10), 1029–1049 (2015). https://doi.org/10.1134/S1064229315100014

    Article  Google Scholar 

  4. Generalized Soil–Erosion Map of the USSR. Scale 1 : 5 million, Ed. by S. S. Sobolev (GUGK, Moscow, 1968).

  5. Annual Report on the Implementation of the State Task for the Execution of the Works by the Federal State Budgetary Institution the Prikumskaya Agrochemical Service Station for 2018. http://budagrohim.ru/images/pdf/otchet_2019.pdf.

  6. O. I. Grigor’eva, “Modeling the area of arable land in the structure of the land fund using mathematical methods (on the example of Belgorod oblast),” Reg. Geosist. 44 (3), 319–332 (2020). https://doi.org/10.18413/2712-7443-2020-44-3-319-332

    Article  Google Scholar 

  7. O. I. Grigor’eva, N. V. Likhnevskaya, and E. Ya. Zelenskaya, Dynamics of the Structure of the Land Fund of the Belgorod Oblast in the Period from 1955 to 2019. Certificate of State Registration of a Database Protected by Copyright. No. 2020620329.

  8. Report on the State and Use of Lands in the Belgorod Oblast, Ed. by N. F. Yakushev (Belgorod, 2005).

    Google Scholar 

  9. Unified Interdepartmental Information and Statistical System (UIISS). https://rosstat.gov.ru/emiss.

  10. Unified Federal Information System on Agricultural Lands. http://efis.mcx.ru/.

  11. O. P. Ermolaev and K. A. Mal’tsev, “Estimation of erosion risk of the soil cover in forest and forest-steppe landscapes of the Middle Volga region using GIS technologies,” Uch. Zap. Kazan. Gos. Univ. 150 (4), 85–98 (2008).

    Google Scholar 

  12. A. P. Zhidkin, M. A. Komissarov, E. N. Shamshurina, and A. V. Mishchenko, “Soil erosion in the Central Russian Upland: a review,” Eurasian Soil Sci. 56 (2), 226–237 (2023). https://doi.org/10.1134/S1064229322601743

    Article  Google Scholar 

  13. A. P. Zhidkin, M. A. Smirnova, A. N. Gennadiev, S. V. Lukin, Ye. A. Zazdravnykh, and N. I. Lozbenev, “Digital mapping of soil associations and eroded soils (Prokhorovskii district, Belgorod oblast),” Eurasian Soil Sci. 54 (1), 13–24 (2021). https://doi.org/10.1134/S1064229321010154

    Article  CAS  Google Scholar 

  14. Land Areas of USSR. Scale 1 : 4000000, Ed. by L. F. Yanvareva (GUGK, Moscow, 1991).

    Google Scholar 

  15. A. L. Ivanov, I. Yu. Savin, V. S. Stolbovoy, S. A. Avetyan, E. A. Shishkonakova, and A. N. Kashtanov, “Map of anthropogenic soil erosion of Russia,” Dokl. Earth Sci. 493 (2), 654–657, (2020). https://doi.org/10.1134/S1028334X20080097

    Article  CAS  Google Scholar 

  16. Map of Unused Agricultural Land Potentially Suitable for Forestry. https://maps.greenpeace.org/maps/aal/.

  17. P. V. Koroleva, Extended Abstract of Candidate’s Dissertation in Agriculture (Moscow, 2022).

  18. G. A. Larionov, Erosion and Deflation of Soils (Mosk. Univ., Moscow, 1993) [in Russian].

    Google Scholar 

  19. F. N. Lisetskii and L. V. Martsinevskaya, “Estimation of the development of linear erosion and soil erodibility based on aerial photography results,” Zemleustroistvo, Kadastr, Monit. Zemel’., No. 10 (58), 39–43 (2009).

  20. L. F. Litvin, Geography of Soil Erosion of Agricultural Lands in Russia (IKTs Akademkniga, Moscow, 2002) [in Russian].

  21. L. F. Litvin, Z. P. Kiryukhina, S. F. Krasnov, and N. G. Dobrovol’skaya, “Dynamics of agricultural soil erosion in European Russia,” Eurasian Soil Sci. 50 (11), 1344–1353 (2017). https://doi.org/10.1134/S1064229317110084

    Article  Google Scholar 

  22. S. V. Lukin, O. S. Veryutina, N. I. Korneiko, and A. V. Malygin, “The influence of water erosion on the basic properties of arable soils in the Belgorod oblast,” Dostizh. Nauki Tekh. APK, No. 10, 7–8 (2008).

    Google Scholar 

  23. K. A. Maltsev and O. P. Yermolaev, “Potential soil loss from erosion on arable lands in the European part of Russia,” Eurasian Soil Sci. 52 (12), 1588–1597 (2019). https://doi.org/10.1134/S106422931912010X

    Article  CAS  Google Scholar 

  24. On the Work of the Federal State Information and Analytical System using GIS Technologies for the Implementation of the Control and Supervisory Powers of Rosselkhoznadzor GIS “Demetra”. Rosselkhoznadzor. https://fsvps.gov.ru/fsvps/print/news/8646.html.

  25. Soil Map of the RSFSR. Scale 1 : 2500000, Ed. by V. M. Fridland (GUGK, Moscow, 1988).

  26. D. I. Rukhovich, M. S. Simakova, A. L. Kulyanitsa, A. V. Bryzzhev, P. V. Koroleva, N. V. Kalinina, E. V. Vil’chevskaya, E. A. Dolinina, and S. V. Rukhovich, “Impact of shelterbelts on the fragmentation of erosional networks and local soil waterlogging,” Eurasian Soil Sci. 47 (11), 1086–1099 (2014). https://doi.org/10.1134/S106422931411009X

    Article  Google Scholar 

  27. D. I. Rukhovich, M. S. Simakova, A. L. Kulyanitsa, A. V. Bryzzhev, P. V. Koroleva, N. V. Kalinina, E. V. Vil’chevskaya, E. A. Dolinina, and S. V. Rukhovich, “Analysis of the use of soil maps in the system of retrospective monitoring of the state of land and soil cover,” Pochvovedenie, No. 5, 605–625 (2015). https://doi.org/10.7868/S0032180X15050081

    Article  Google Scholar 

  28. D. I. Rukhovich, M. S. Simakova, A. L. Kulyanitsa, A. V. Bryzzhev, P. V. Koroleva, N. V. Kalinina, E. V. Vil’chveskaya, E. A. Dolinina, and S. V. Rukhovich, “Retrospective analysis of changes in land uses on vertic soils of closed mesodepressions on the Azov plain,” Eurasian Soil Sci. 48 (10), 1050–1075 (2015). https://doi.org/10.1134/S1064229315100099

    Article  CAS  Google Scholar 

  29. D. I. Rukhovich, M. S. Simakova, A. L. Kulyanitsa, A. V. Bryzzhev, P. V. Koroleva, N. V. Kalinina, G. I. Chernousenko, E. V. Vil’chevskaya, E. A. Dolinina, and S. V. Rukhovich, “The influence of soil salinization on land use changes in azov district of Rostov oblast,” Eurasian Soil Sci. 50 (3), 276–295 (2017). https://doi.org/10.1134/S1064229317010136

    Article  CAS  Google Scholar 

  30. D. I. Rukhovich, D. A. Shapovalov, A. L. Kulyanitsa, and P. V. Koroleva, “Food security in Russia and government statistics—what fictitious numbers lead to,” Mezhdunar. S-kh. Zh., No. 6, 64–69 (2017). https://doi.org/10.24411/2587-6740-2017-16016

  31. D. I. Shashko, Agroclimatic Zoning of the USSR. Scale 1 : 4000000 (GUGK-SOPS. Moscow,1969).

    Google Scholar 

  32. A. Yu. Sidorchuk, “Erosion-accumulation processes on the Russian Plain and problems of siltation of small rivers,” in Proceedings of the Academy of Water Sciences. Series Water Problems of Channel Management (1995), Vol. 1, pp. 74–83.

  33. Federal Service for Registration, Cadastre and Cartography. https://rosreestr.gov.ru/.

  34. Physico-Chemical Properties of Agricultural Soils and Humus Balance on Arable Land in the Russian Federation, Ed. by A. K. Krylatov (Russlit, Moscow, 1996) [in Russian].

    Google Scholar 

  35. P. Borrelli, C. Ballabio, J. Yang, D. Robinson, and P. Panagos, “GloSEM: High-resolution global estimates of present and future soil displacement by water erosion,” Sci. Data 9, 406 (2022). https://doi.org/10.1038/s41597-022-01489-x

    Article  Google Scholar 

  36. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees. The Wadsworth Statistics/Probability (International Group, Belmont, 1984).

    Google Scholar 

  37. M. Buchhorn, L. Bertels, B. Smets, B. De Roo, M. Lesiv, N. E. Tsendbazar, D. Masiliunas, and L. Li, Copernicus Global Land Service: Land Cover 100m: Version 3 Globe 2015-2019: Algorithm Theoretical Basis Document (Zenodo, Geneva, 2020). https://doi.org/10.5281/zenodo.3938968

  38. Zh. A. Buryak, A. G. Narozhnyaya, A. V. Gusarov, and A. A. Beylich, “Solutions for the spatial organization of cropland with increased erosion risk at the regional level: a case study of Belgorod oblast, European Russia,” Land 11, 1492 (2022). https://doi.org/10.3390/land11091492

    Article  Google Scholar 

  39. U. Franko, B. Oelschlaegel, and S. Schenk, “Simulation of temperature-, water- and nitrogen dynamics using the Model CANDY,” Ecol. Modell. 81, 213–222 (1995).

    Article  CAS  Google Scholar 

  40. M. Friedl and D. Sulla-Menashe, Boston University and MODAPS SIPS, NASA: MCD12Q1 MODIS. Terra+ Aqua Land Cover Type Yearly L3 Global 0.05 Deg CMG. NASA LP DAAC (2015). https://doi.org/10.5067/MODIS/MCD12C1,6

  41. V. N. Golosov, A. L. Collins, N. G. Dobrovolskaya, O. I. Bazhenova, YuV. Ryzhov, and A. Yu. Sidorchuk, “Soil loss on the arable lands of the forest-steppe and steppe zones of European Russia and Siberia during the period of intensive agriculture,” Geoderma 381, 114678 (2021). https://doi.org/10.1016/j.geoderma.2020.114678

    Article  CAS  Google Scholar 

  42. O. I. Grigoreva, O. A. Marinina, and E. Ya. Zelenskaya, “Spatial and temporal changes in the land resources of the Belgorod region from 1954 to 2017 under the influence of anthropogenic factors,” Biosci., Biotechnol. Res. Commun. 13 (1), 60–67 (2020). https://doi.org/10.21786/bbrc/13.1/10

    Article  Google Scholar 

  43. M. C. Hansen, P. V. Potapov, A. H. Pickens, A. Tyukavina, A. Hernandez-Serna, V. Zalles, S. Turubanova, et al., “Global land use extent and dispersion within natural land cover using Landsat data,” Environ. Res. Lett. 17 (3), 034050 (2022). https://doi.org/10.1088/1748-9326/ac46

    Article  Google Scholar 

  44. IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge, 2001).

  45. D. S. Jenkinson and J. H. Rayner, “The turnover of soil organic matter in some of the Rothamsted classical experiments,” Soil Sci. 123, 298–305 (1977).

    Article  CAS  Google Scholar 

  46. K. A. Maltsev and O. P. Yermolaev, “Assessment of soil loss by water erosion in small river basins in Russia,” Catena 195, 104726 (2020). https://doi.org/10.1016/j.catena.2020.104726

    Article  Google Scholar 

  47. D. K. McCool, G. R. Foster, C. K. Mutchler, and L. D. Meyer, “Revised slope length factor for the Universal Soil Loss Equation,” Trans. ASAE 32 (5), 1571–1576 (1989). https://doi.org/10.13031/2013.31192

    Article  Google Scholar 

  48. P. Panagos, P. Borrelli, K. Meusburger, B. Yu, A. Klik, K. J. Lim, J. E. Yang, et al., “Global rainfall erosivity assessment based on high-temporal resolution rainfall records,” Sci. Rep. 7, 1–12 (2017). https://doi.org/10.1038/s41598-017-04282-8

    Article  CAS  Google Scholar 

  49. J. Poesen, “Soil erosion in the Anthropocene: research needs,” Earth Surf. Processes Landforms 43, 64–84 (2018). https://doi.org/10.1002/esp.4250

    Article  Google Scholar 

  50. L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “CatBoost: unbiased boosting with categorical features,” in Advances in Neural Information Processing Systems 31. Annual Conference on Neural Information Processing Systems (Montreal, 2018), pp. 6638–6648.

  51. J. Smith, P. Smith, M. Wattenbach, et al., “Projected changes in the organic carbon stocks of cropland mineral soils of European Russia and the Ukraine, 1990-2070,” Global Change Biol. 13 (2), 342–356 (2007). https://doi.org/10.1111/j.1365-2486.2006.01297.x

    Article  Google Scholar 

  52. D. Zanaga, R. Van De Kerchove, W. De Keersmaecker, N. Souverijns, C. Brockmann, R. Quast, J. Wevers, et al., ESA WorldCover 10 m 2020 v100. Data Set (Zenodo, Geneva, 2021). https://doi.org/10.5281/zenodo.5571936

  53. A. Zhidkin, D. Fomicheva, N. Ivanova, T. Dostál, A. Yurova, M. Komissarov, and J. Krasa, “A detailed reconstruction of changes in the factors and parameters of soil erosion over the past 250 years in the forest zone of European Russia (Moscow region),” Int. Soil Water Conserv. Res. 10 (1), 149–160 (2022). https://doi.org/10.1016/j.iswcr.2021.06.003

    Article  Google Scholar 

  54. A. Zhidkin, A. Gennadiev, D. Fomicheva, E. Shamshurina, and V. Golosov, “Soil erosion models verification in a small catchment for different time windows with changing cropland boundary,” Geoderma 430, 116322 (2023). https://doi.org/10.1016/j.geoderma.2022.116322

    Article  Google Scholar 

Download references

Funding

This   work was supported by the Russian Science Foundation, project no. 22-17-00071 (https://rscf.ru/project/22-17-00071/)—modeling of soil erosion based on the official map of cropland UFIS AL, construction of the map of cultivated cropland using the retrospective monitoring approach (RMSLC), soil erosion modeling based on the RMSLC map, and comparative analysis of the results obtained and project no. 22-17-00025 (https://rscf.ru/project/22-17-00025/)—methodology for finding cropland boundaries on the basis of the ESA WS and GLCLU models and soil erosion modeling based on ESA WS and GLCLU cropland maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Zhidkin.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by D. Konyushkov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhidkin, A.P., Rukhovich, D.I., Maltsev, K.A. et al. Variation of Soil Erosion Estimates Based on Different Maps of Cropland in Belgorod Oblast, Russia. Eurasian Soil Sc. 57, 666–676 (2024). https://doi.org/10.1134/S1064229323603293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323603293

Keywords:

Navigation