Skip to main content
Log in

Comparative Investigation of Cd Adsorption on Alkaline Sandy Clay Loam Soil Treated with Cerium Oxide Nanoparticles, Organic and Inorganic Amendments

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Adsorption via various organic and inorganic amendments is a principal mechanism to remediate cadmium contamination and decrease its entry into food chain. In present study, alkaline sandy clay loam soil, the cerium oxide nanoparticles (CeO2-NPs), rice husk biochar (RHB), rock gypsum (RGy) and farm manure (FYM) and alkaline sandy clay loam soil amended (1%) with these amendments were tested for effective Cd adsorption-desorption properties. The soil Langmuir estimated maximum Cd adsorption (Qmax) was found to be 0.60 mg g–1 (linear isotherm) and 0.65 mg g–1 (non-linear isotherm) while among different amendments, CeO2-NPs had the maximum (88.23, 89.33 mg g–1) Qmax and addition of this to soil resulted in 166% and 128% increase, while RHB, RGy and FYM also resulted in substantial increment in Cd Qmax of soil. Second model was Freundlich isotherm (linear and nonlinear) which shows significant adsorption capacity (Kf) and adsorption intensity (N) on the amended soils. The Temkin isotherm gave us information about equilibrium binding (A) and latent heat of sorption (B) suggesting the adsorption reaction were overall exothermic in nature. The Cd adsorption trend as estimated by pseudo second order kinetic model (PSO) suggest that soil has a net adsorbed Cd (Qa) of 0.76 mg g–1 while a net desorption (Qd) of 0.23 was observed making a net 30% desorption. The inclusion of CeO2-NPs in soil (1%) resulted Qa of 1.97 mg g–1 and Qd of 0.42 mg g–1 which is a net 21% desorption. Other amendments RHB, RGy and FYM also resulted in net lower Cd desorption with 22, 27 and 26% Qd respectively. The CeO2-NPs is best amendment for effective Cd removal from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. A. Abu Al-Rub, M. Kandah, and N. Al-Dabaybeh, “Competitive adsorption of nickel and cadmium on sheep manure wastes: experimental and prediction studies,” Sep. Sci. Technol. 38, 483–497 (2003).

    Article  Google Scholar 

  2. H. R. Ahmad, M. Zia-ur-Rehman, M. I. Sohail, M. A. Haq, H. Khalid, M. A. Ayub, and G. Ishaq, “Effects of rare earth oxide nanoparticles on plants,” in Nanomaterials in Plants, Algae, and Microorganisms (Academic Press, 2018), pp. 239–275.

    Google Scholar 

  3. K. Aftab, S. Iqbal, M. R. Khan, R. Busquets, R. Noreen, N. Ahmad, S. G. T. Kazimi, A. M. Karami, N. M. S. Al Suliman, and M. Ouladsmane, “Wastewater-irrigated vegetables are a significant source of heavy metal contaminants: toxicity and health risks,” Molecules 28 (3), 1371 (2023).

    Article  Google Scholar 

  4. A. Al-Kinani, M. Eftekhari, M. Gheibi, and M. Chamsaz, “Polyaniline-coated cerium oxide nanoparticles as an efficient adsorbent for preconcentration of ultra-trace levels of cadmium (II) followed by electrothermal atomic absorption spectrometry,” Spectrosc. Lett. 51, 287–296 (2018).

    Article  Google Scholar 

  5. V. R. Angelova, V. I. Akova, N. S. Artinova, and K. I. Ivanov, “The effect of organic amendments on soil chemical characteristics,” Bulg. J. Agric. Sci. 19, 958–971 (2013).

    Google Scholar 

  6. M. A. Ayub, M. I. Sohail, M. Umair, M. Z. Rehman, M. Usman, M. Sabir, M. Rizwan, S. Ali, and Z. Ahmad, “Cerium oxide nanoparticles: advances in synthesis, prospects and application in agro-ecosystem,” in Comprehensive Analytical Chemistry (Elsevier, 2019), Vol. 87, pp. 209–250.

    Google Scholar 

  7. M. R. Awual, M. Khraisheh, N. H. Alharthi, M. Luqman, A. Islam, M. Rezaul Karim, M. M. Rahman, and M. A. Khaleque, “Efficient detection and adsorption of cadmium (II) ions using innovative nano-composite materials,” Chem. Eng. J. 343, 118–127 (2018).

    Article  Google Scholar 

  8. M. Azhar, M. Z. Rehman, S. Ali, M. F. Qayyum, A. Naeem, M. A. Ayub, M. A. Haq, A. Iqbal, and M. Rizwan, “Comparative effectiveness of different biochars and conventional organic materials on growth, photosynthesis and cadmium accumulation in cereals,” Chemosphere 227, 72–81 (2019).

    Article  Google Scholar 

  9. M. Bakshi and P. C. Abhilash, “Nanotechnology for soil remediation: revitalizing the tarnished resource,” in Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants (Elsevier, 2020), pp. 345–370.

    Google Scholar 

  10. K. S. Balkhair and M. A. Ashraf, “Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia,” Saudi J. Biol. Sci. 23, S32–S44 (2016).

    Article  Google Scholar 

  11. S. Bashir, M. S. Rizwan, A. Salam, Q. Fu, J. Zhu, M. Shaaban, and H. Hu, “Cadmium immobilization potential of rice straw-derived biochar, zeolite and rock phosphate: extraction techniques and adsorption mechanism,” Bull. Environ. Contam. Toxicol. 100, 727–732 (2018).

    Article  Google Scholar 

  12. S. Bashir, M. Adeel, A. B. Gulshan, J. Iqbal, S. Khan, M. Rehman, and M. Azeem, “Effects of organic and inorganic passivators on the immobilization of cadmium in contaminated soils: a review,” Environ. Eng. Sci. 36 (9), 986–998 (2019).

    Article  Google Scholar 

  13. A. Bogusz, P. Oleszczuk, and R. Dobrowolski, “Adsorption and desorption of heavy metals by the sewage sludge and biochar-amended soil,” Environ. Geochem. Health 41, 1663–1674 (2019).

    Article  Google Scholar 

  14. A. Bhatnagar, M. Sillanpää, and A. Witek-Krowiak, “Agricultural waste peels as versatile biomass for water purification–a review,” Chem. Eng. J. 270, 244–271 (2015).

    Article  Google Scholar 

  15. A. R. Contreras, A. Garcia, E. Gonzalez, E. Casals, V. Puntes, A. Sánchez, X. Font, and S. Recillas, “Potential use of CeO2, TiO2 and Fe3O4 nanoparticles for the removal of cadmium from water,” Desalin. Water Treat. 41, 296–300 (2012).

    Article  Google Scholar 

  16. A. R. Contreras, E. Casals, V. Puntes, D. Komilis, A. Sánchez, X. Font, “Use of cerium oxide (CeO2) nanoparticles for the adsorption of dissolved cadmium (II), lead (II) and chromium (VI) at two different pHs in single and multi-component systems,” Global Nest J. 17, 536–543 (2015).

    Article  Google Scholar 

  17. A. R. Contreras Rodríguez, J. E. McCarthy, A. Alonso, J. Moral-Vico, X. Font, Y. K. Guńko, and A. Sánchez, “Cerium oxide nanoparticles anchored onto graphene oxide for the removal of heavy metal ions dissolved in water,” Desalin. Water Treat. 124, 134–145 (2018).

    Google Scholar 

  18. L. Cui, J. Yan, L. Li, G. Quan, C. Ding, T. Chen, C. Yin, J. Gao, and Q. Hussain, “Does biochar alter the speciation of Cd and Pb in aqueous solution?,” Bioresources 10, 88–104 (2015).

    Google Scholar 

  19. D. Chen, T. Awut, B. Liu, Y. Ma, T. Wang, and I. Nurulla, “Functionalized magnetic Fe3O4 nanoparticles for removal of heavy metal ions from aqueous solutions,” e-Polymers 16, 313–322 (2016).

  20. M. H. Dehghani, S. Tajik, A. Panahi, M. Khezri, A. Zarei, Z. Heidarinejad, and M. Yousefi, “Adsorptive removal of noxious cadmium from aqueous solutions using poly urea-formaldehyde: a novel polymer adsorbent,” MethodsX 5, 1148–1155 (2018).

    Article  Google Scholar 

  21. F. I. El-Dib, D. E. Mohamed, O. A. El-Shamy, and M. R. Mishrif, “Study the adsorption properties of magnetite nanoparticles in the presence of different synthesized surfactants for heavy metal ions removal,” Egypt. J. Pet. 29, 1–7 (2020).

    Google Scholar 

  22. M. Esfandbod, M. Esfandbod, A. Forghani, E. Adhami, and M. R. Rashti, “Cadmium adsorption behavior of some soils from northern Iran,” in Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a Changing World (Brisbane, 2010), pp. 1–6.

  23. A. Es-said, H. Nafai, G. Lamzougui, A. Bouhaouss, and R. Bchitou, “Comparative adsorption studies of cadmium ions on phosphogypsum and natural clay,” Sci Afr. 13, e00960 (2021).

    Google Scholar 

  24. H. Feng and J. Cheng, “Whole-process risk management of soil amendments for remediation of heavy metals in agricultural soil—a review,” Int. J. Environ. Res. Public Health 20 (3), 1869 (2023).

    Article  Google Scholar 

  25. M. P. F. Fontes and P. C. Gomes, “Simultaneous competitive adsorption of heavy metals by the mineral matrix of tropical soils,” Appl. Geochem. 18, 795–804 (2003).

    Article  Google Scholar 

  26. S. Gran, R. Aziz, M. T. Rafiq, M. Abbasi, A. Qayyum, A. Y. Elnaggar, H. H. Elganzory, Z. M. El-Bahy, and E. E. Hussein, “Development of cerium oxide/corncob nanocomposite: a cost-effective and eco-friendly adsorbent for the removal of heavy metals,” Polymers 13, 4464 (2021).

    Article  Google Scholar 

  27. F. U. Haider, C. Liqun, J. A. Coulter, S. A. Cheema, J. Wu, R. Zhang, M. Wenjun, and M. Farooq, “Cadmium toxicity in plants: impacts and remediation strategies,” Ecotoxicol. Environ. Saf. 211, 111887 (2021).

    Article  Google Scholar 

  28. M. C. Hoyos-Sánchez, A. C. Córdoba-Pacheco, L. F. Rodríguez-Herrera, and R. Uribe-Kaffure, “Removal of Cd (II) from aqueous media by adsorption onto chemically and thermally treated rice husk,” J. Chem., (2017).

  29. B. Huang, D. Li, Z. Yuan, M. Zheng, C. Liang, Y. Liao, and C. Liu, “Adsorption characteristics of cadmium onto aggregates of various acidic red soils from South China,” J. Soils Sediments, 1–14 (2021).

  30. Z. L. He, H. P. Xu, Y. M. Zhu, X. E. Yang, and G. C. Chen, “Adsorption-desorption characteristics of cadmium in variable charge soils,” J. Environ. Sci. Health 40, 805–822 (2005).

    Article  Google Scholar 

  31. A. P. Jackson and B. J. Alloway, “The transfer of cadmium from agricultural soils to the human food chain,” in Biogeochemistry of Trace Metals (2017), pp. 121–170.

  32. C. K. Jain and M. K. Sharma, “Adsorption of cadmium on bed sediments of river Hindon: adsorption models and kinetics,” Water, Air, Soil Pollut. 137, 1–19 (2002).

    Article  Google Scholar 

  33. M. K. John, “Cadmium adsorption maxima of soils as measured by the Langmuir isotherm,” Can. J. Soil Sci. 52, 343–350 (1972).

    Article  Google Scholar 

  34. Y. Jia, S. Shi, J. Liu, S. Su, Q. Liang, X. Zeng, and T. Li, “Study of the effect of pyrolysis temperature on the Cd2+ adsorption characteristics of biochar,” Appl Sci. 8, 1019 (2018).

    Article  Google Scholar 

  35. H. Jiang, T. Li, X. Han, X. Yang, and Z. He, “Effects of pH and low molecular weight organic acids on competitive adsorption and desorption of cadmium and lead in paddy soils,” Environ. Monit. Assess. 184, 6325–6335 (2012).

    Article  Google Scholar 

  36. M. I. Kandah, F. A. A. Al-Rub, and N. Al-Dabaybeh, “The aqueous adsorption of copper and cadmium ions onto sheep manure,” Adsorpt. Sci. Technol. 21, 501–509 (2003).

    Article  Google Scholar 

  37. A. F. Khafaga, A. El-Hack, E. Mohamed, A. E. Taha, S. S. Elnesr, and M. Alagawany, “The potential modulatory role of herbal additives against Cd toxicity in human, animal, and poultry: a review,” Environ. Sci. Pollut. Res. 26, 4588–4604 (2019).

    Article  Google Scholar 

  38. A. Kubier, R. T. Wilkin, and T. Pichler, “Cadmium in soils and groundwater: a review,” Appl. Geochem. 108, 104388 (2019).

    Article  Google Scholar 

  39. S. Kızıltas Demir and N. Tugrul, “Zinc and cadmium adsorption from wastewater using hydroxyapatite synthesized from flue gas desulfurization waste,” Water Sci. Technol. 84, 1280–1292 (2021).

    Article  Google Scholar 

  40. P. Kucharski, B. Białecka, A. Śliwińska, and A. Pieprzyca, “Evaluation of specific capacity of poultry litter in heavy metal sorption,” Water, Air, Soil Pollut. 232, 1–11 (2021).

    Article  Google Scholar 

  41. P. Loganathan, S. Vigneswaran, J. Kandasamy, and R. Naidu, “Cadmium sorption and desorption in soils: a review,” Crit. Rev. Environ. Sci. Technol. 42, 489–533 (2012).

    Article  Google Scholar 

  42. S. G. Lu and Q. F. Xu, “Competitive adsorption of Cd, Cu, Pb and Zn by different soils of Eastern China,” Environ. Geol. 57, 685–693 (2009).

    Article  Google Scholar 

  43. W. Lu, Y. Liu, H. Ye, D. Lin, G. Li, Y. Zhao, T. Deng, H. Li, and R. Wang, “Adsorption and desorption characteristics of cadmium on different contaminated paddy soil types: kinetics, isotherms, and the effects of soil properties,” Sustainability 13, 7052 (2021).

    Article  Google Scholar 

  44. Y. Li, S. Dong, J. Qiao, S. Liang, X. Wu, M. Wang, H. Zhao, and W. Liu, “Impact of nanominerals on the migration and distribution of cadmium on soil aggregates,” J. Cleaner Prod. 262, 121355 (2020).

    Article  Google Scholar 

  45. S. Ma, F. Jing, S. P. Sohi, and J. Chen, “New insights into contrasting mechanisms for PAE adsorption on millimeter, micron-and nano-scale biochar,” Environ. Sci. Pollut. Res. 26, 18636–18650 (2019).

    Article  Google Scholar 

  46. S. Ma, Y. Hu, Q. Zeng, Z. Xu, Y. Cui, Y. Ma, J. Su, and Z. Nan, “Temporal changes of calcareous soil properties and their effects on cadmium uptake by wheat under wastewater irrigation for over 50 years,” Chemosphere 263, 127971 (2021).

    Article  Google Scholar 

  47. J. P. Marques, V. G. S. Rodrigues, I. M. Raimondi, and J. Z. Lima, “Increase in Pb and Cd adsorption by the application of peat in a tropical soil,” Water, Air, Soil Pollut. 231, 1–21 (2020).

    Google Scholar 

  48. J. Meng, L. Zhong, L. Wang, X. Liu, C. Tang, H. Chen, and J. Xu, “Contrasting effects of alkaline amendments on the bioavailability and uptake of Cd in rice plants in a Cd-contaminated acid paddy soil,” Environ. Sci. Pollut. Res. 25, 8827–8835 (2018).

    Article  Google Scholar 

  49. S. R. Mishra and M. Ahmaruzzaman, “Cerium oxide and its nanocomposites: structure, synthesis, and wastewater treatment applications,” Mater. Today Commun. 28, 102562 (2021).

    Article  Google Scholar 

  50. H. O. Oluwasola, J. N. Asegbeloyin, A. E. Ochonogor, J. U. Ani, U. I. Collins, and E. O. Ebube, “Cadmium and lead adsorption capacities of Nigerian ultisol soil of tropics,” Orient. J. Chem. 35 (3), 1004 (2019).

    Article  Google Scholar 

  51. J. H. Park, J. J. Wang, S. H. Kim, S. W. Kang, C. Y. Jeong, J. R. Jeon, K. H. Park, J. S. Cho, R. D. Delaune, and D. C. Seo, “Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures,” J. Colloid Interface Sci. 553, 298–307 (2019).

    Article  Google Scholar 

  52. D. B. Pal, R. Selvasembian, and P. Singh, “Cadmium removal by composite copper oxide/ceria adsorbent from synthetic wastewater,” Biomass Convers. Biorefin., 1–10 (2021).

  53. O. S. Pokrovsky, A. Probst, E. Leviel, and B. H. Liao, “Interactions between cadmium and lead with acidic soils: Experimental evidence of similar adsorption patterns for a wide range of metal concentrations and the implications of metal migration,” J. Hazard. Mater. 199, 358–366 (2012).

    Article  Google Scholar 

  54. V. Prakash, J. Peralta-Videa, D. K. Tripathi, X. Ma, and S. Sharma, “Recent insights into the impact, fate and transport of cerium oxide nanoparticles in the plant-soil continuum,” Ecotoxicol. Environ. Saf. 221, 112403 (2021).

    Article  Google Scholar 

  55. S. Prapagdee, S. Piyatiratitivorakul, and A. Petsom, “Physico-chemical activation on rice husk biochar for enhancing of cadmium removal from aqueous solution,” Asian J. Water Environ. Pollut. 13, 27–34 (2016).

    Article  Google Scholar 

  56. V. Ramachandran and T. J. D’souza, “Adsorption of cadmium by Indian soils,” Water, Air, Soil Pollut. 111 (1), 225–234 (1999).

    Article  Google Scholar 

  57. G. Rahimi, L. Gholami, and B. Piran, “Effect of irrigation with industrial wastewater and gypsum amendments on heavy metal in soil and black cumin (Nigella sativa L.) seed,” Commun. Soil Sci. Plant. Anal. 53, 227–242 (2022).

    Article  Google Scholar 

  58. M. Raii, D. P. Minh, F. J. E. Sanz, and A. Nzihou, “Lead and cadmium removal from aqueous solution using an industrial gypsum by-product,” Procedia Eng. 83, 415–422 (2014).

    Article  Google Scholar 

  59. M. Rezaei Rashti, M. Esfandbod, E. Adhami, and P. Srivastava, “Cadmium desorption behaviour in selected sub-tropical soils: effects of soil properties,” J. Geochem. Explor. 144, 230–236 (2014).

    Article  Google Scholar 

  60. M. Z. Rehman, M. Rizwan, S. Ali, A. Naeem, B. Yousaf, G. Liu, H. Khalid, H. F. Saifullah, and M. Azhar, “A field study investigating the potential use of phosphorus combined with organic amendments on cadmium accumulation by wheat and subsequent rice,” Arab. J. Geosci. 11, 594 (2018).

    Article  Google Scholar 

  61. A. A. H. Saeed, N. Y. Harun, M. M. Nasef, A. Al-Fakih, A. A. S. Ghaleb, and H. K. Afolabi, “Removal of cadmium from aqueous solution by optimized rice husk biochar using response surface methodology,” Ain Shams Eng. J. 13, 101516 (2022).

    Article  Google Scholar 

  62. T. Sarwar, M. Shahid, S. Khalid, A.H. Shah, N. Ahmad, M. A. Naeem, B. Murtaza, and H. F. Bakhat, “Quantification and risk assessment of heavy metal build-up in soil-plant system after irrigation with untreated city wastewater in Vehari, Pakistan,” Environ. Geochem. Health 42, 4281–4297 (2020).

    Article  Google Scholar 

  63. M. I. M. Said, S. Sabri, and S. Azman, “Effect of particle size on cadmium removal by banana peels,” J. Teknol. 72 (4) (2015).

  64. S. Satarug, D. A. Vesey, and G. C. Gobe, “Current health risk assessment practice for dietary cadmium: data from different countries,” Food Chem. Toxicol. 106, 430–445 (2017).

    Article  Google Scholar 

  65. Z. Satti, M. Akhtar, N. Mazhar, S. U. Khan, N. Ahmed, Q. M. Yasir, M. Irshad, R. Pervaiz, and W. Ahmad, “Adsorption of cadmium from aqueous solution onto untreated gypsum rock material: equilibrium and kinetics,” Biointerface Res. Appl. Chem. 11, 10755–10764 (2020).

    Article  Google Scholar 

  66. S. Serrano, F. Garrido, C. G. Campbell, and M. T. García-González, “Competitive sorption of cadmium and lead in acid soils of Central Spain,” Geoderma 124 (1–2), 91–104 (2005).

    Article  Google Scholar 

  67. A. Sharma, M. Kaur, J. K. Katnoria, and A. K. Nagpal, “Heavy metal pollution: a global pollutant of rising concern,” in Toxicity and Waste Management using Bioremediation (2016), pp. 1–26.

  68. H. Sharifan, X. Wang, B. Guo, and X. Ma, “Investigation on the modification of physicochemical properties of cerium oxide nanoparticles through adsorption of Cd and As (III)/As (V),” ACS Sustainable Chem. Eng. 6, 13454–13461 (2018).

    Article  Google Scholar 

  69. T. Sheela, Y. A. Nayaka, R. Viswanatha, S. Basavanna, and T. G. Venkatesha, “Kinetics and thermodynamics studies on the adsorption of Zn (II), Cd (II) and Hg (II) from aqueous solution using zinc oxide nanoparticles,” Powder Technol. 217, 163–170 (2012).

    Article  Google Scholar 

  70. C. Shen, Y. Zhao, W. Li, Y. Yang, R. Liu, and D. Morgen, “Global profile of heavy metals and semimetals adsorption using drinking water treatment residual,” Chem. Eng. J. 372, 1019–1027 (2019).

    Article  Google Scholar 

  71. V. Siracusa and I. Blanco, “Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly (ethylene terephthalate) (Bio-PET): recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications,” Polymers 12, 1641 (2020).

    Article  Google Scholar 

  72. M. I. Sohail, A. A. Waris, M. A. Ayub, M. Usman, M. Rehman, M. Sabir, and T. Faiz, “Environmental application of nanomaterials: a promise to sustainable future,” in Comprehensive Analytical Chemistry (2019), Vol. 87, pp. 1–54.

    Article  Google Scholar 

  73. M. I. Sohail, M. Z. Rehman, M. Rizwan, B. Yousaf, S. Ali, M. A. Haq, A. Anayat, and A. A. Waris, “Efficiency of various silicon-rich amendments on growth and cadmium accumulation in field-grown cereals and health risk assessment,” Chemosphere 244, 125481 (2020).

    Article  Google Scholar 

  74. C. Su, “A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques,” Environ. Skeptics Critics 3, 24 (2014).

    Google Scholar 

  75. S. Tong, H. Deng, L. Wang, T. Huang, S. Liu, and J. Wang, “Multi-functional nanohybrid of ultrathin molybdenum disulfide nanosheets decorated with cerium oxide nanoparticles for preferential uptake of lead (II) ions,” Chem. Eng. J. 335, 22–31 (2018).

    Article  Google Scholar 

  76. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry-ATSDR (1999).

  77. A. Ullah, A. Tahir, H. U. Rashid, T. Rehman, S. Danish, B. Hussain, and H. Akca, “Strategies for reducing Cd concentration in paddy soil for rice safety,” J. Cleaner Prod. 316, 128116 (2021).

    Article  Google Scholar 

  78. Y. Wang, X. Tang, Y. Chen, L. Zhan, Z. Li, and Q. Tang, “Adsorption behavior and mechanism of Cd (II) on loess soil from China,” J. Hazard. Mater. 172, 30–37 (2009).

    Article  Google Scholar 

  79. M. Wang, Z. Chen, W. Song, D. Hong, L. Huang, and Y. Li, “A review on cadmium exposure in the population and intervention strategies against cadmium toxicity,” Bull. Environ. Contam. Toxicol. 106, 65–74 (2021).

    Article  Google Scholar 

  80. B. Wang, J. Lan, C. Bo, B. Gong, and J. Ou, “Adsorption of heavy metal onto biomass-derived activated carbon,” RSC Adv. 13, 4275–4302 (2023).

    Article  Google Scholar 

  81. M. Wołowiec, M. Komorowska-Kaufman, A. Pruss, G. Rzepa, and T. Bajda, “Removal of heavy metals and metalloids from water using drinking water treatment residuals as adsorbents: a review,” Minerals 9 (8), 487 (2019).

    Article  Google Scholar 

  82. C. Wu, Y. Li, M. Chen, X. Luo, Y. Chen, N. Belzile, and S. Huang, “Adsorption of cadmium on degraded soils amended with maize-stalk-derived biochar,” Int. J. Environ. Res. Public Health 15 (11), 2331 (2018).

    Article  Google Scholar 

  83. J. Xiang, Q. Lin, S. Cheng, J. Guo, X. Yao, Q. Liu, G. Yin, and D. Liu, “Enhanced adsorption of Cd (II) from aqueous solution by a magnesium oxide-rice husk biochar composite,” Environ. Sci. Pollut. Res. 25 (14), 14032–14042 (2018).

    Article  Google Scholar 

  84. D. Xu, Y. Zhao, K. Sun, B. Gao, Z. Wang, J. Jin, Z. Zhang, S. Wang, Y. Yan, X. Liu, and F. Wu, “Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties,” Chemosphere 111, 320–326 (2014).

    Article  Google Scholar 

  85. Y. Yan, X. Dong, X. Sun, X. Sun, J. Li, J. Shen, W. Han, X. Liu, and L. Wang, “Conversion of waste FGD gypsum into hydroxyapatite for removal of Pb2+ and Cd2+ from wastewater,” J. Colloid Interface Sci. 429, 68–76 (2014). 89. Y. Yan, Q. Li, X. Sun, Z. Ren, F. He, Y. Wang, and L. Wang, “Recycling flue gas desulphurization (FGD) gypsum for removal of Pb(II) and Cd(II) from wastewater,” J. Colloid Interface Sci. 457, 86–95 (2015).

    Article  Google Scholar 

  86. S. Yuan, Z. Xi, Y. Jiang, J. Wan, C. Wu, Z. Zheng, and X. Lu, “Desorption of copper and cadmium from soils enhanced by organic acids,” Chemosphere 68 (7), 1289–1297 (2007).

    Article  Google Scholar 

  87. N. Zainab, S. Mehmood, A. Shafiq-ur-Rehman, A. Munir, Z. I. Tanveer, Z. U. Nisa, M. Imran, M. T. Javed, and H. J. Chaudhary, “Health risk assessment and bioaccumulation of potentially toxic metals from water, soil, and forages near coal mines of district Chakwal, Punjab, Pakistan,” Environ. Geochem. Health, 1–26 (2023).

  88. G. Zeng, H. Wu, J. Liang, S. Guo, L. Huang, P. Xu, Y. Liu, Y. Yuan, X. He, and Y. He, “Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil,” RSC Adv. 5, 34541–34548 (2015).

    Article  Google Scholar 

  89. B. Ziyadanoğullari, Ö. Yavuz, F. Aydin, I. Aydin, and H. Bingöl, “Removal of cadmium from aqueous solution by a soil containing magnesite,” Arch. Agron. Soil Sci. 50, 371–376 (2004).

    Article  Google Scholar 

  90. X. Zhao, H. Zhao, X. Huang, L. Wang, F. Liu, X. Hu, J. Li, G. Zhang, and P. Ji, “Effect and mechanisms of synthesis conditions on the cadmium adsorption capacity of modified fly ash,” Ecotoxicol. Environ. Saf. 223, 112550 (2021).

    Article  Google Scholar 

  91. L. Zhu, L. Tong, N. Zhao, X. Wang, X. Yang, and Y. Lv., “Key factors and microscopic mechanisms controlling adsorption of cadmium by surface oxidized and aminated biochars,” J. Hazard. Mater. 382, 121002 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study is part of PhD and we would like to acknowledge The Higher Education Commission of Pakistan for providing necessary funds under HEC Indigenous PhD fellowship program for 5000 scholars, HEC (Phase II, Batch III). We would like to acknowledge help and support of Dr. Tariq Aziz (Institute of Soil and Environmental Sciences, UAF; Principal UAF sub-campus Depalpur) for elemental analysis.

Funding

This study is part of PhD, and we would like to acknowledge The Higher Education Commission of Pakistan (under HEC Indigenous PhD fellowship program for 5000 scholars, HEC (Phase II, Batch III)) for providing necessary funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Ahmad.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

In preparing this paper, the author(s) used AI TOOL Open AI-Chat GPT-3 in order to change formatting of references from springer general format to aip format. After using this tool/service, Mr. Ayub has reviewed and edited the content as necessary and take full responsibility for the content of the publication as we have verified all references.

CONFLICT OF INTEREST

We declare no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayub, M.A., Ahmad, H.R., Zia-ur-Rehman, M. et al. Comparative Investigation of Cd Adsorption on Alkaline Sandy Clay Loam Soil Treated with Cerium Oxide Nanoparticles, Organic and Inorganic Amendments. Eurasian Soil Sc. 56 (Suppl 2), S300–S316 (2023). https://doi.org/10.1134/S1064229323601555

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323601555

Keywords:

Navigation