Skip to main content
Log in

Respiratory Activity and Biodiversity of Microbiomes in Podzolic Soils of Post-Pyrogenic Spruce Forests in the Krasnoyarsk Krai and Komi Republic

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Microbiological properties of podzolic soils (Retisols) of old-aged spruce forests in the middle taiga of the Krasnoyarsk Krai and Komi Republic are described. Despite the geographical distance, the soils of these regions are similar in their morphological and physicochemical characteristics. Any statistically significant difference in the accumulation of microbial biomass and microbial respiration rate in the soils under spruce forests of the European North (Komi Republic) and Central Siberia (Krasnoyarsk Krai) is unobservable. However, the contents of carbon, nitrogen, and microbial biomass in soil have a significant effect on the composition of microbiomes in pyrogenic and nonpyrogenic soil horizons. In addition, the pyrogenic factor considerably influences the α-diversity of bacteria and fungi. As is shown, representatives of the dominant phyla of bacteria (Proteobacteria, Actinobacteria, and Planctomycetes) and fungi (Ascomycota, Basidiomycota and Mucoromycota) are actively involved in the assimilation of organic matter containing pyrogenic carbon. The microbiomes of the upper pyrogenic subhorizons include the groups of carbotrophic bacteria (Thermomonosporaceae, Isosphaeraceae, Bacillaceae, and Xanthobacteraceae) and fungi from the Dothideomycetes (Cenococcum), Eurotiomycetes (Penicillium), Sordariomycetes (Trichoderma), Leotiomycetes (Oidiodendron), and Umbelopsidomycetes (Umbelopsis) classes, which are capable of converting pyrolysis products into available and nontoxic substrates for other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. D. Anan’eva, Microbiological Aspects of Self-Purification and Sustainability of Soils (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  2. A. V. Bogorodskaya, E. A. Kukavskaya, O. P. Kalenskaya, and L. V. Buryak, “Microbiological assessment of the state of soils in coniferous forests of Central Siberia after fires of different intensity,” Lesovedenie, No. 2, 138–156 (2019). https://doi.org/10.1134/S0024114819010030

    Article  Google Scholar 

  3. Impact of Fires on Ecosystem Components of Siberian Middle Taiga Pine Forests (Nauka, Novosibirsk, 2014) [in Russian].

  4. G. V. Gladkov, E. Yu. Chebykina, E. V. Evdokimova, E. A. Ivanova, A. K. Kimeklis, A. O. Zverev, A. A. Kichko, E. E. Andronov, and E. V. Abakumov, “Restoration of soil microbiome in different soil horizons after top and bottom forest fires,” Ekol. Genet. 18 (3), 343–356 (2020).

    Article  Google Scholar 

  5. I. D. Grodnitskaya, L. V. Karpenko, S. N. Syrtsov, and A. S. Prokushkin, “Microbiological parameters and peat stratigraphy of two types of bogs in the northern part of the Sym–Dubches interfluve (Krasnoyarsk Krai),” Biol. Bull. (Moscow) 45 (2), 160–170 (2018).

    Article  Google Scholar 

  6. I. D. Grodnitskaya, L. V. Karpenko, O. E. Pashkeeva, N. N. Goncharova, V. V. Startsev, O. A. Baturina, and A. A. Dymov, “Impact of forest fires on the microbiological properties of oligotrophic peat soils and gleyed peat podzols of bogs in the northern part of the Sym-Dubches interfluve, Krasnoyarsk region,” Eurasian Soil Sci. 55 (4), 460–473 (2022).

    Article  Google Scholar 

  7. A. A. Dymov, Yu. A. Dubrovskii, D. N. Gabov, E. V. Zhangurov, and N. A. Nizovtsev, “Influence of a fire in a northern taiga spruce forest on soil organic matter,” Lesovedenie, No. 1, 52–62 (2015).

    Google Scholar 

  8. A. A. Dymov, Soil Successions in the Boreal Forests of the Komi Republic (GEOS, Moscow, 2020) [in Russian]. https://doi.org/10.34756/GEOS.2020.10.37828

  9. I. V. Zaboeva, Soils and Land Resources of the Komi Republic (Komi Knizhnoe Izd., Syktyvkar, 1975) [in Russian].

    Google Scholar 

  10. Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

  11. P. V. Krasilnikov, “Stable carbon compounds in soils: their origin and functions,” Eurasian Soil Sci. 48 (9), 997–1008 (2015). https://doi.org/10.1134/S1064229315090069

    Article  Google Scholar 

  12. Forest Ecosystems of the Yenisei Meridian, Ed. by F. I. Pleshikov (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2002) [in Russian].

    Google Scholar 

  13. Methods of Soil Microbiology and Biochemistry, Ed. by D. G. Zvyagintsev (Mosk. Gos. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  14. M. V. Medvedeva, O. N. Bakhmet, V. A. Anan’ev, S. A. Moshnikov, A. V. Mamai, E. V. Moshkina, and V. V. Timofeeva, “Changes in the biological activity of soils in coniferous plantations after a fire in the middle taiga of Karelia,” Lesovedenie, No. 6, 560–574 (2020). https://doi.org/10.31857/S0024114820060066

    Article  Google Scholar 

  15. A. F. Osipov, V. V. Startsev, A. S. Prokushkin, and A. A. Dymov, “Carbon stocks in the main types of forest soils and tree species of the Krasnoyarsk Krai,” Teor. Prikl. Ekol., No. 1, 67-74 (2023).

  16. E. N. Rudneva, I. V. Zaboeva, and I. S. Urusevskaya, “Soil-geographical zoning of the central and eastern parts of the European territory of the USSR,” in Podzolic Soils of the Central and Eastern Parts of the European Territory of the USSR (Nauka, Leningrad, 1981) [in Russian].

    Google Scholar 

  17. Theory and Practice of Chemical Analysis of Soils, Ed. by L. A. Vorob’eva (Moscow, 2006) [in Russian].

    Google Scholar 

  18. F. M. Khabibullina, E. G. Kuznetsova, and I. Z. Vaseneva, “Micromycetes in podzolic and bog-podzolic soils in the middle taiga subzone of northeastern European Russia,” Eurasian Soil Sci. 47 (10), 1027–1032 (2014). https://doi.org/10.1134/S1064229314100044

    Article  Google Scholar 

  19. J. P. E. Anderson and K. H. Domsch, “A physiological method for the quantitative measurement of microbial biomass in soils,” Soil Biol. Biochem. 10 (3), 314–322 (1978).

    Article  Google Scholar 

  20. S. T. Bates, D. Berg-Lyons, J. G. Caporaso, W. A. Walters, R. Knight, and N. Fierer, “Examining the global distribution of dominant archaeal populations in soil,” ISME J. 5, 908–917 (2010).

    Article  Google Scholar 

  21. A. M. Bolger, M. Lohse, and B. Usadel, “Trimmomatic: a flexible trimmer for Illumina sequence data,” Bioinformatics 30 (15), 2114–2120 (2014).

    Article  Google Scholar 

  22. J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, et al., “QIIME allows analysis of high through put community sequencing data,” Nat. Methods 7 (5), 335–336 (2010). https://doi.org/10.1038/nmeth.f.303

    Article  Google Scholar 

  23. A. M. Comeau, W. K. W. Li, J-E. Tremblay, E. C. Carmack, and C. Lovejoy, “Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum,” PLoS One 6 (11), e27492 (2011). https://doi.org/10.1371/journal.pone.0027492

    Article  Google Scholar 

  24. S. N. Dedysh and A. A. Ivanova, “Planctomycetes in boreal and subarctic wetlands: Diversity patterns and potential ecological functions,” FEMS Microbiol. Ecol. 95 (2), (2019). https://doi.org/10.1093/femsec/fiy227

  25. A. A. Dymov, N. M. Gorbach, N. N. Goncharova, L. V. Karpenko, D. N. Gabov, I. N. Kutyavin, V. V. Startsev, A. S. Mazur, and I. D. Grodnitskaya, “Holocene and recent fires influence on soil organic matter, microbiological and physico-chemical properties of peats in the European North-East of Russia,” Catena 117, 106449 (2022). https://doi.org/10.1016/j.catena.2022.106449

    Article  Google Scholar 

  26. C. Guerrero, J. Mataix-Solera, I. Gómez, F. García-Orenes, and M. M. Jordán, “Microbial recolonization and chemical changes in a soil heated at different temperatures,” Int. J. Wildland Fire 14, 385–400 (2005).

    Article  Google Scholar 

  27. C. L. Khodadad, A. R. Zimmerman, S. J. Green, S. Uthandi, and J. S. Foster, “Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments,” Soil Biol. Biochem. 43 (2), 385–392 (2011). https://doi.org/10.1016/j.soilbio.2010.11.005

    Article  Google Scholar 

  28. H. Knicker, “How does fire affect the nature and stability of soil organic nitrogen and carbon? A review,” Biogeochemistry 85, 91–118 (2007).https://doi.org/10.1007/s10533-007-9104-4

    Article  Google Scholar 

  29. J. Lehmann, B. Liang, D. Solomon, M. Lerotic, F. Luizão, J. Kinyangi, T. Schafer, S. Wirick, and C. Jacobsen, “Near-edge X-ray absorption fine structure NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: application to black carbon particles,” Global Biogeochem. Cycles 19, GB1013 (2005). https://doi.org/10.1029/2004GB002435

    Article  Google Scholar 

  30. J. Mataix-Solera, C. Guerrero, F. García-Orenes, G. M. Bárcenas, and M. P. Torres, “Forest fire effects on soil microbiology,” in Fire Effects on Soils and Restoration Strategies, Ed. by A. Cerdà (Science Publishers, Enfield, 2009), pp. 133–175.

    Google Scholar 

  31. P. J. McMurdie and S. Holmes, “S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data,” PLoS One 8 (4), e61217 (2013). https://doi.org/10.1371/journal.pone.0061217

    Article  Google Scholar 

  32. A. F. Osipov, K. S. Bobkova, and A. A. Dymov, “Carbon stocks of soils under forest in the Komi Republic of Russia,” Geoderma Reg. 27, e00427 (2021). https://doi.org/10.1016/j.geodrs.2021.e00427

    Article  Google Scholar 

  33. A. Pandey, Sh. Chaudhry, A. Sharma, V. S. Choudhary, M. K. Malviya, S. Chamoli, K. Rinu, P. Trivedi, and L. M. S. Palni, “Recovery of Bacillus and Pseudomonas spp. from the ‘Fired Plots’ under shifting cultivation in northeast India,” Curr. Microbiol. 62, 273–280 (2011). https://doi.org/10.1007/s00284-010-9702-6

    Article  Google Scholar 

  34. J. Pietikäinen, R. Hiukka, and H. Fritze, “Does short-term heating of forest humus change its properties as a substrate for microbes?,” Soil Biol. Biochem. 32, 277–288 (2000).

    Article  Google Scholar 

  35. C. M. Preston and M. W. I. Schmidt, “Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions,” Biogeosciences 3 (4), 397–420 (2006). https://doi.org/10.5194/bg-3-397-2006

    Article  Google Scholar 

  36. C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, and F. O. Glockner, The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools (2013).

  37. G. T. Sparling, “The substrate-induced respiration method,” in Methods in Applied Soil Microbiology and Biochemistry (Academic Press, 1995), pp. 397–404.

    Google Scholar 

  38. V. V. Startsev, E. V. Yakovleva, I. N. Kutyavin, and A. A. Dymov, “Fire impact on carbon pools and basic properties of retisols in native spruce forests of the European North and Central Siberia of Russia,” Forests 13, 1135 (2022). https://doi.org/10.3390/f13071135

    Article  Google Scholar 

  39. H. Sun, M. Santalahti, J. Pumpanen, K. Köster, F. Berninger, T. Raffaello, and F. O. Asiegbu, “Bacterial community structure and function shift across a northern boreal forest fire chronosequence,” Sci. Rep. 6, 32411 (2016). https://doi.org/10.1038/srep32411

    Article  Google Scholar 

  40. World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Res. Rep. No. 106, Update 2015 (FAO, Rome). www.fao.org

  41. E. S. Wright, “Using DECIPHER v2.0 to analyze big biological sequence data in R,” The R J. 8 (1), 352–359 (2016). https://doi.org/10.1007/BF02927260

    Article  Google Scholar 

  42. http://web.uri.edu/gsc/files/16s-metagenomic-library-prep-guide-15044223-b.pdf.

Download references

ACKNOWLEDGMENTS

The authors thank A.S. Prokushkin for his assistance in the organization and performance of field work near the village of Zotino (Krasnoyarsk Krai, Russia).

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 19-29-05111 mk) and the state budget for the Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences (project no. 0287-2021-0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Grodnitskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grodnitskaya, I.D., Pashkeeva, O.E., Startsev, V.V. et al. Respiratory Activity and Biodiversity of Microbiomes in Podzolic Soils of Post-Pyrogenic Spruce Forests in the Krasnoyarsk Krai and Komi Republic. Eurasian Soil Sc. 56, 793–806 (2023). https://doi.org/10.1134/S1064229323600379

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323600379

Keywords:

Navigation