Skip to main content
Log in

Molecular Biological Characteristics of Soil Microbiome in the Northern Part of the Novaya Zemlya Archipelago

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

Microbiomes of strongly skeletal residual calcareous pelozems (Skeletal Leptosols (Loamic)), carbopetrozems (Calcaric Leptosols (Protic)), petrozems (Skeletal Leptosols (Protic)), and cryozems (Oxyaquic Cryosols (Loamic)) in the north of Novaya Zemlya were studied by the methods of molecular biology. The number of copies of 16S rRNA genes was small and ranged from 2.30 × 107 to 1.63 × 109 gene copies/g soil for archaea and from 3.47 × 108 to 2.26 × 1011 gene copies/g soil for bacteria; the number of copies of ribosomal genes ITS rRNA of fungi varied from 8.87 × 106 to 7.56 × 109 gene copies/g soil. The content of copies of ribosomal genes of all groups of microorganisms sharply decreased down the soil profiles. Bacteria predominated among prokaryotes (up to 90%). The greatest abundance (20%) was manifested by the phyla Proteobacteria, Actinobacteria, and Acidobacteria; the abundances of Bacteroidetes, Firmicutes, Verrucomicrobia, Gemmatimonadetes, and Chloroflexi were about 1–10%. The Archaea domain represented mainly by the Ferroplasma genus (phylum Euryarchaeota), accounted for ≤4% of prokaryotes. The taxonomic diversity of prokaryotes increased down the soil profiles and reached maximum values in the suprapermafrost horizons, where the number of candidate phyla typical of marine ecosystems—Latescibacteria, Tectomicrobia, Parcubacteria, Saccaribacteria, Hydrogenedentes, Peregrinibacteria, Ignavibacteria, and Gracilibacteria—was high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. V. Blagodatskaya, M. V. Semenov, and A. V. Yakushev, Activity and Biomass of Soil Microorganisms in a Changing Environment (KMK Press, Moscow, 2016) [in Russian].

    Google Scholar 

  2. M. V. Korneykova, D. A. Nikitin, A. V. Dolgikh, and A. S. Soshina, “Soil mycobiota of the Apatity city, Murmansk region,” Mikologiya Fitopatol. 54 (4), 264–277 (2020). https://doi.org/10.31857/S0026364820040078

    Article  Google Scholar 

  3. M. V. Korneykova and D. A. Nikitin, “Qualitative and quantitative characteristics of the soil microbiome in the impact zone of the Kandalaksha aluminum smelter,” Eurasian Soil Sci. 54 (6), 897–906 (2021). https://doi.org/10.1134/S1064229321060089

    Article  Google Scholar 

  4. L. V. Lysak, I. A. Maksimova, D. A. Nikitin, A. E. Ivanova, A. G. Kudinova, V. S. Soina, and O. E. Marfenina, “Microbial communities of soils in East Antarctica,” Moscow Univ. Bull. Ser. 16: Biol. 73 (3), 132–140 (2018).

    Google Scholar 

  5. O. E. Marfenina, D. A. Nikitin, and A. E. Ivanova, “The structure of fungal biomass and diversity of cultivated micromycetes in Antarctic soils (Progress and Russkaya stations),” Eurasian Soil Sci. 49 (8), 934–941. https://doi.org/10.1134/S106422931608007X

  6. D. A. Nikitin, O. E. Marfenina, and I. A. Maksimova, “The use of the succession approach in studying the species composition of microscopic fungi and the content of fungal biomass in Antarctic soils,” Mikologiya Fitopatol. 51 (4), 211–219 (2017).

    Google Scholar 

  7. D. A. Nikitin, M. V. Semenov, A. A. Semikolennykh, I. A. Maksimova, A. V. Kachalkin, and A. E. Ivanova, “Fungal biomass and species diversity of the cultivated mycobiota of soils and substrates of Northbrook, Franz Josef Land,” Mikologiya Fitopatol. 53 (4), 210–222 (2019). https://doi.org/10.1134/S002636481904010X

    Article  Google Scholar 

  8. D. A. Nikitin, E. A. Ivanova, A. D. Zhelezova, M. V. Semenov, R. G. Gadzhiumarov, A. K. Tkhakakhova, T. I. Chernov, N. A. Ksenofontova, and O. V. Kutovaya, “Assessment of the impact of no-till technology and plowing on the microbiome of southern agrochernozems,” Eurasian Soil Sci. 53 (12), 1782–1793 (2020). https://doi.org/10.1134/S106422932012008X

    Article  Google Scholar 

  9. D. A. Nikitin, L. V. Lysak, D. V. Badmadashiev, S. S. Kholod, N. S. Mergelov, A. V. Dolgikh, and S. V. Goryachkin, “Biological activity of soils in the north of the Novaya Zemlya Archipelago: effect of the largest glacial sheet in Russia,” Eurasian Soil Sci. 54 (10), 1496–1516. https://doi.org/10.1134/S1064229321100082

  10. D. A. Nikitin, L. V. Lysak, O. V. Kutovaya, and T. A. Gracheva, “Ecological-trophic structure and taxonomic characteristics of the communities of soil microorganisms in the northern part of the Novaya Zemlya Archipelago,” Eurasian Soil Sci. 54 (11), 1689-1704 (2021). https://doi.org/10.1134/S1064229321110107

    Article  Google Scholar 

  11. D. A. Nikitin and M. V. Semenov, “Characterization of Franz Josef Land Soil Mycobiota by Microbiological Plating and Real-time PCR,” Microbiology (Moscow) 91 (1), 56–66 (2022). https://doi.org/10.1134/S002626172201009X

    Article  Google Scholar 

  12. M. V. Semenov, “Metabarcoding and metagenomics in soil ecology research,” Zhurn. Obshch. Biol. 80 (6), 403–417 (2019). https://doi.org/10.1134/S004445961906006X

    Article  Google Scholar 

  13. M. V. Semenov, N. A. Manucharova, and A. L. Stepanov, “Biomass and taxonomic structure of microbial communities in soils of the right-bank basin of the Oka River,” Eurasian Soil Sci. 52 (8), 971–981. https://doi.org/10.1134/S106422931908012X

  14. P. Baldrian, “The known and the unknown in soil microbial ecology,” FEMS Microbiol. Ecol. 95 (2), fiz005 (2019). https://doi.org/10.1093/femsec/fiz005

    Article  Google Scholar 

  15. A. A. Belov, V. S. Cheptsov, N. A. Manucharova, and Z. S. Ezhelev, “Bacterial communities of Novaya Zemlya Archipelago ice and permafrost,” Geosciences 10 (2), 67 (2020).https://doi.org/10.3390/geosciences10020067

    Article  Google Scholar 

  16. J. E. Box, W. T. Colgan, T. R. Christensen, N. M. Schmidt, M. Lund, F. J. W. Parmentier, R. Brown, et al., “Key indicators of Arctic climate change: 1971–2017,” Environ. Res. Lett. 4 (4), 045010 (2019). https://doi.org/10.1088/1748-9326/aafc1b

    Article  Google Scholar 

  17. J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, et al., “QIIME allows analysis of high-throughput community sequencing data,” Nat. Methods 7 (5), 335–336 (2010). https://doi.org/10.1038/nmeth.f.303

    Article  Google Scholar 

  18. M. Dopson, C. Baker-Austin, A. Hind, J. P. Bowman, P. L. Bond, “Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments,” Appl. Environ. Microbiol. 70 (4), 2079–2088 (2004).

    Article  Google Scholar 

  19. P. A. Figueroa-Gonzalez, T. L. Bornemann, P. S. Adam, J. Plewka, F. Revesz, C. Hagen, A. Tancsics, J. Probst, “Saccharibacteria as organic carbon sinks in hydrocarbon-fueled communities,” Front. Microbiol. (2020). https://doi.org/10.3389/fmicb.2020.587782

  20. C. G. Flocco, W. P. Mac Cormack, and K. Smalla, “Antarctic soil microbial communities in a changing environment: their contributions to the sustainability of Antarctic ecosystems and the bioremediation of anthropogenic pollution,” in The Ecological Role of Microorganisms in the Antarctic Environment (Springer, Cham., 2019), pp. 133–161.https://doi.org/10.1007/978-3-030-02786-5_7

    Book  Google Scholar 

  21. R. A. Garrett and H. P. Klenk, Archaea: Evolution, Physiology, and Molecular Biology (John Wiley & Sons, 2008).

    Google Scholar 

  22. F. O. Glöckner, P. Yilmaz, C. Quast, J. Gerken, A. Beccati, A. Ciuprina, G. Brunsa, P. Yarzac, J. Pepliesc, R. Westram, and W. Ludwig, “25 Years of serving the community with ribosomal RNA gene reference databases and tools,” J. Biotechnol. 261, 169–176 (2017). https://doi.org/10.1007/978-3-030-02786-5_7

    Article  Google Scholar 

  23. C. A. Guerra, A. Heintz-Buschart, J. Sikorski, A. Chatzinotas, N. Guerrero-Ramirez, S. Cesarz, L. Beaumelle, et al., “Blind spots in global soil biodiversity and ecosystem function research,” Nature communic. 11 (1), 1–13 (2020). https://doi.org/10.1038/s41467-020-17688-2

  24. C. M. Hansel, S. Fendorf, P. M. Jardine, and C. A. Francis, “Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile,” Appl. Environ. Microbiol. 74, 1620–1633 (2008). https://doi.org/10.1128/AEM.01787-07

    Article  Google Scholar 

  25. R. Jacoby, M. Peukert, A. Succurro, A. Koprivova, and S. Kopriva, “The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions,” Frontiers Plant Sci. 8, 1617 (2017). https://doi.org/10.3389/fpls.2017.01617

    Article  Google Scholar 

  26. P. H. Janssen, “Identifying the dominant soil bacterial taxa in libraries of 16S RRNA and 16S RRNA genes,” Appl. Environ. Microbiol. 72 (3), 1719–1728 (2006). https://doi.org/10.1128/AEM.72.3.1719-1728.2006

    Article  Google Scholar 

  27. H. M. Kim, J. Y. Jung, E. Yergeau, C. Y. Hwang, L. Hinzman, S. Nam, S. G. Hong, O. Kim, J. Chun, and Y. K. Lee, “Bacterial community structure and soil properties of a subarctic tundra soil in council, Alaska,” FEMS Microbiol. Ecol. 89 (2), 465–475 (2014). https://doi.org/10.1111/1574-6941.12362

    Article  Google Scholar 

  28. K. D. Kits, C. J. Sedlacek, E. V. Lebedeva, P. Han, A. Bulaev, P. Pjevac, A. Daebeler, et al., “Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle,” Nature 549, 269–272 (2017). https://doi.org/10.1038/nature23679

    Article  Google Scholar 

  29. L. A. Malard and D. A. Pearce, “Microbial diversity and biogeography in Arctic Soils,” Environ. Microbiol. Rep 10 (6), 611–625 (2018). https://doi.org/10.1111/1758-2229.12680

    Article  Google Scholar 

  30. M. Podar, C. B. Abulencia, M. Walcher, D. Hutchison, K. Zengler, J. A. Garcia, T. Holland, D. Cotton, L. Hauser, and M. Keller, “Targeted access to the genomes of low-abundance organisms in complex microbial communities,” Appl. Environ. Microbiol. 10 (73), 3205–3214 (2007). https://doi.org/10.1128/AEM.02985-06

    Article  Google Scholar 

  31. G. Pold, J. P. Schimel, and S. A. Sistla, “Soil bacterial communities vary more by season than with over two decades of experimental warming in Arctic tussock tundra,” Elementa: Science of the Anthropocene 9 (1) (2021). https://doi.org/10.1525/elementa.2021.00116

  32. E. Post, R. B. Alley, T. R. Christensen, M. Macias-Fauria, B. C. Forbes, M. N. Gooseff et al., “Virginia and Muyin Wang. The polar regions in a 2°C warmer world,” Sci. Adv. 5 (12), 12 (2019). https://doi.org/10.1126/sciadv.aaw9883

    Article  Google Scholar 

  33. E. Pruesse, C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig, J. Peplies, and F. O. Glöckner, “SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB,” Nucleic Acid Res. 35 (21), 7188–7196 (2007). https://doi.org/10.1093/nar/gkm864

    Article  Google Scholar 

  34. C. Rinke, P. Schwientek, A. Sczyrba, N. N. Ivanova, I. J. Anderson, J.-F. Cheng, A. Darling, et al., “Insights into the phylogeny and coding potential of microbial dark matter,” Nature 499 (7459), 431–437 (2013). https://doi.org/10.1038/nature12352

    Article  Google Scholar 

  35. C. M. Sieber, A. J. Probst, A. Sharrar, B. C. Thomas, M. Hess, S. G. Tringe, and J. F. Banfield, “Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy,” Nature Microbiol. 3 (7), 836 (2018).

    Article  Google Scholar 

  36. J. S. Singh and V. K. Gupta, “Soil microbial biomass: a key soil driver in management of ecosystem functioning,” Sci. Total Environ. 634, 497–500 (2018).

    Article  Google Scholar 

  37. A. Spang, R. Hatzenpichler, C. Brochier-Armanet, and T. Rattei, “Distinct Gene Set in Two Different Lineages of Ammonia-Oxidizing Archaea Supports the Phylum Thaumarchaeota,” Trends in Microbiology 18 (8), 331–340 (2010). https://doi.org/10.1016/j.tim.2010.06.003

    Article  Google Scholar 

  38. A. D. Steen, A. Crits-Christoph, P. Carini, K. M. DeAngelis, N. Fierer, K. G. Lloyd, and J. C. Thrash, “High proportions of bacteria and archaea across most biomes remain uncultured,” The ISME J. (2019). https://doi.org/10.1038/s41396-019-0484-y

  39. B. M. Tripathi, H. M. Kim, J. Y. Jung, S. Nam, H. T. Ju, M. Kim, and Y. K. Lee, “Distinct taxonomic and functional profiles of the microbiome associated with different soil horizons of a moist tussock tundra in Alaska,” Frontiers in Microbiology 10, 1442 (2019). https://doi.org/10.3389/fmicb.2019.01442

    Article  Google Scholar 

  40. E. Yergeau, K. K. Newsham, D. A. Pearce, and G. A. Kowalchuk, “Patterns of bacterial diversity across a range of Antarctic terrestrial habitats,” Environ. Microbiol. 9, 2670–2682 (2007). https://doi.org/10.1111/j.1462-2920.2007.01379.x

    Article  Google Scholar 

  41. W. Zhang, P. A. Miller, C. Jansson, P. Samuelsson, J. Mao, B. Smith, “Self-amplifying feedbacks accelerate greening and warming of the Arctic,” Geophys. Rev. Lett. 45 (14), 7102–7111 (2018).

    Article  Google Scholar 

  42. A. Zhelezova, T. Chernov, A. Tkhakakhova, N. Xenofontova, M. Semenov, O. Kutovaya, “Prokaryotic community shifts during soil formation on sands in the tundra zone,” Plos One 14 (4), e0206777 (2019). https://doi.org/10.1371/journal.pone.0206777

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Arctic Floating University project of the Lomonosov Northern Arctic Federal University and personally K.S. Zaikov for organizing field work on Novaya Zemlya. The authors thank the staff of the Department of Geography and Evolution of Soils of the Institute of Geography of the Russian Academy of Sciences and personally S.V. Goryachkin for their help in determining the taxonomic position of the studied soils.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 20-04-00328.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Nikitin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Konyushkov

SUPPLEMENTARY MATERIALS

Table 1. Soil properties in the northern part of Novaya Zemlya

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, D.A., Lysak, L.V. & Badmadashiev, D.V. Molecular Biological Characteristics of Soil Microbiome in the Northern Part of the Novaya Zemlya Archipelago. Eurasian Soil Sc. 55, 1106–1115 (2022). https://doi.org/10.1134/S1064229322080130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322080130

Keywords:

Navigation