Skip to main content
Log in

Levels and Factors of the Accumulation of Metals and Metalloids in Roadside Soils, Road Dust, and Their PM10 Fraction in the Western Okrug of Moscow

  • SOURCES, WAYS, AND EXTENT OF SOIL POLLUTION
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

A comprehensive geochemical analysis of 18 chemical elements (As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Ta, V, W, and Zn) in roadside soils, road dust, and their physical clay fraction (particles <10 μm in diameter (PM10)) has been performed for the first time for the Western administrative okrug (WAO) of Moscow. The priority pollutants of roadside soils and their PM10 fraction are W, Sb, Mo, Cu, Cd, Sn, Zn, and Bi. In the PM10 fraction, the concentration of most of these elements is noticeably higher because of a larger specific surface area. At the same levels of accumulation, the list of priority pollutants in road dust is shorter than in the soils. In the PM10 fraction of roadside soils and road dust, the priority pollutants are the same, but their content is about two times higher. In the soil–road dust system, a general W–Sb–Sn–Mo–Zn–Cu paragenesis is formed, and in the subsystem associated with the PM10 fraction, significant correlations exist for Cu, Mo, and Sb, which indicates the predominant role of fine particles in the transfer of elements between soil and dust. The results of the regression analysis indicate that the accumulation of chemical elements in soils and their PM10 fraction is controlled by the geochemical position, soil texture, type of road, and soil reaction. In road dust and its PM10 fraction, the leading factors for the accumulation of elements are the volume of vehicle emissions and the type of road, as well as the physicochemical properties of the dust. Contamination of the fine dust fraction is very high and very dangerous (total contamination factor Zc = 113), and the similar fraction of roadside soils is characterized by the high to very high (Zc = 71) contamination along large roads under the impact of traffic. In general, the level of contamination of roadside soils and road dust in the WAO is moderately hazardous with minor fluctuations on different types of roads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. G. Bogatyrev, N. I. Zhilin, V. P. Samsonova, N. L. Yakushev, N. P. Kirillova, A. I. Benediktova, F. I. Zemskov, M. M. Karpukhin, D. V. Ladonin, A. N. Vartanov, and V. V. Demin, “Long-term monitoring of snow cover within natural and urbanized landscapes of the Moscow region,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 2, 85–96 (2018).

  2. Great Atlas of Moscow City, Ed. by S. O. Shmidt (Feoriya, Moscow, 2013) [in Russian].

    Google Scholar 

  3. A. F. Vadyunina and Z. A. Korchagina, Methods for Studying Soil Physical Properties (Agropromizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  4. M. A. Glazovskaya, “Geochemical barriers in soils: types, functions, and ecological role,” in Geochemistry of Landscapes and Geography of Soils (APR, Moscow, 2012), pp. 26–44.

  5. D. P. Gubanova, A. A. Vinogradova, M. A. Iordanskii, and A. I. Skorokhod, “Time variations in the composition of atmospheric aerosol in Moscow in spring 2020,” Izv., Atmos. Ocean. Phys. 57, 297–309 (2021). https://doi.org/10.1134/S0001433821030051

    Article  Google Scholar 

  6. I. D. Eremina, A. E. Aloyan, V. O. Arutyunyan, I. K. Larin, N. E. Chubarova, and A. N. Yermakov, “Acidity and mineral composition of precipitation in Moscow: influence of deicing salts,” Izv., Atmos. Ocean. Phys. 51, 624–632 (2015). https://doi.org/10.1134/S0001433815050047

    Article  Google Scholar 

  7. R. V. Kaigorodov, M. I. Tiunova, and A. V. Druzhinina, “Pollutants in roadway dust and roadside wood vegetation in urban areas,” Vestn. Perm. Univ., Ser. Biol. 36 (10), 141–146 (2009).

    Google Scholar 

  8. I. Z. Kamanina, S. P. Kaplina, and N. S. Melin, “Road sweepings from the transport and road complex as a source of urban contamination,” Vestn. Mosk. Gos. Obl. Univ., Ser. Estestv. Nauki 3 (3), 88–97 (2019). https://doi.org/10.18384/2310-7189-2019-3-88-97

    Article  Google Scholar 

  9. N. S. Kasimov, L. A. Bezberdaya, D. V. Vlasov, and M. Yu. Lychagin, “Metals, metalloids, and benzo[a]pyrene in PM10 particles of soils and road dust of Alushta city,” Eurasian Soil Sci. 52, 1608–1621 (2019). https://doi.org/10.1134/S1064229319120068

    Article  Google Scholar 

  10. N. S. Kasimov, D. V. Vlasov, and N. E. Kosheleva, “Chemical composition of road dust and its РМ10 fraction as a pollution indicator of the urban environment,” Ecol. Industry Russia. 25 (10), 43–49 (2021). https://doi.org/10.18412/1816-0395-2021-10-43-49

    Article  Google Scholar 

  11. N. S. Kasimov, D. V. Vlasov, N. E. Kosheleva, and E. M. Nikiforova, Landscape Geochemistry of the Eastern Moscow (APR, Moscow, 2016) [in Russian].

  12. N. S. Kasimov, M. Yu. Lychagin, S. R. Chalov, and G. L. Shinkareva, “Paragenetic associations of chemical elements in landscapes,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 6, 20–28 (2019).

  13. N. A. Kachinskii, Mechanical and Microaggregate Composition of Soils and Its Study Methods (Academy of Sciences of the USSR, Moscow, 1958) [in Russian].

    Google Scholar 

  14. N. V. Kolomiytsev, B. I. Korzhenevskiy, G. Yu. Tolkachev, and N. O. Get’man, “Special monitoring of heavy metal pollution in the bottom sediments of water objects,” Geogr. Vestn., 1 (52), 139–154 (2020). https://doi.org/10.17072/2079-7877-2020-1-139-154

  15. N. E. Kosheleva, M. F. Dorokhova, N. Yu. Kuzminskaya, A. V. Ryzhov, and N. S. Kasimov, “Impact of motor vehicles on the ecological state of soils in the Western District of Moscow,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 2, 16–27 (2018).

  16. D. V. Ladonin and A. P. Mikhaylova, “Heavy metals and arsenic in soils and street dust of the Southeastern Administrative District of Moscow: long-term data,” Eurasian Soil Sci. 53, 1635–1644 (2020). https://doi.org/10.1134/S1064229320110095

    Article  Google Scholar 

  17. A. A. Popov, T. D. Saulskaya , and D. P. Shatilo, “The industrial zones as а factor of ecological situation and housing prices variation in Moscow,” Ecol. Industry Russia. 20 (2), 32–38 (2016). https://doi.org/10.18412/1816-0395-2016-2-32-38

    Article  Google Scholar 

  18. T. V. Prokof’eva, M. I. Gerasimova, O. S. Bezuglova, K. A. Bakhmatova, A. A. Gol’eva, S. N. Gorbov, E. A. Zharikova, N. N. Matinyan, E. N. Nakvasina, and N. E. Sivtseva, “Inclusion of soils and soil-like bodies of urban territories into the Russian soil classification system,” Eurasian Soil Sci. 47, 959–967 (2014). https://doi.org/10.1134/S1064229314100093

    Article  Google Scholar 

  19. Yu. E. Saet, B. A. Revich, E. P. Yanin, R. S. Smirnova, E. L. Basharkevich, T. L. Onishchenko, L. N. Pavlova, N. Ya. Trefilova, A. I. Achkasov, and S. Sh. Sarkisyan, Geochemistry of Environment (Nedra, Moscow, 1990) [in Russian].

    Google Scholar 

  20. SanPiN 1.2.3685-21. Hygienic Standards and Requirements to Safety and/or Harmlessness of Environmental Factors for Humans (Rospotrebnadzor, Moscow, 2021) [in Russian].

  21. D. T. Ukarkhanova, D. V. Moskovchenko, and A. A. Yurtaev, “The study of dust-like formations in urban ecosystems,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, 104, 241–269 (2020). https://doi.org/10.19047/0136-1694-2020-104-241-269

    Article  Google Scholar 

  22. C. A. Alves, M. Evtyugina, A. M. P. Vicente, E. D. Vicente, T. V. Nunes, P. M. A. Silva, M. A. C. Duarte, C. A. Pio, F. Amato, and X. Querol, “Chemical profiling of PM10 from urban road dust,” Sci. Total Environ. 634, 41–51 (2018). https://doi.org/10.1016/j.scitotenv.2018.03.338

    Article  Google Scholar 

  23. C. A. Alves, A. M. P. Vicente, A. I. Calvo, D. Baumgardner, F. Amato, X. Querol, C. Pio, and M. Gustafsson, “Physical and chemical properties of non-exhaust particles generated from wear between pavements and tires,” Atmos. Environ. 224, 117252 (2020). https://doi.org/10.1016/j.atmosenv.2019.117252

    Article  Google Scholar 

  24. C. Boente, D. Baragaño, N. García-González, R. Forján, A. Colina, and J. R. Gallego, “A holistic methodology to study geochemical and geomorphological control of the distribution of potentially toxic elements in soil,” Catena 208, 105730 (2022). https://doi.org/10.1016/j.catena.2021.105730

    Article  Google Scholar 

  25. K. Cai and C. Li, “Street dust heavy metal pollution source apportionment and sustainable management in a typical city–Shijiazhuang, China,” Int. J. Environ. Res. Publ. Health 16 (14), 2625 (2019). https://doi.org/10.3390/ijerph16142625

    Article  Google Scholar 

  26. O. Erina, M. Tereshina, G. Shinkareva, D. Sokolov, and M. Lychagin, “Natural background and transformation of water quality in the Moskva River,” IOP Conf. Ser.: Earth Environ. Sci. 834 (1), 012055 (2021). https://doi.org/10.1088/1755-1315/834/1/012055

  27. M. S. Ermolin, P. S. Fedotov, A. I. Ivaneev, V. K. Karandashev, N. N. Fedyunina, and A. A. Burmistrov, “A contribution of nanoscale particles of road-deposited sediments to the pollution of urban runoff by heavy metals,” Chemosphere 210, 65–75 (2018). https://doi.org/10.1016/j.chemosphere.2018.06.150

    Article  Google Scholar 

  28. P. Faure, P. Landais, L. Schlepp, and R. Michels, “Evidence for diffuse contamination of river sediments by road asphalt particles,” Environ. Sci. Technol. 34 (7), 1174–1181 (2000). https://doi.org/10.1021/es9909733

    Article  Google Scholar 

  29. A. J. D. Ferreira, D. Soares, L. M. V. Serrano, R. P. D. Walsh, C. Dias-Ferreira, and C. S. S. Ferreira, “Roads as sources of heavy metals in urban areas. The Covões catchment experiment, Coimbra, Portugal,” J. Soils Sediments. 16 (11), 2622–2639 (2016). https://doi.org/10.1007/s11368-016-1492-4

    Article  Google Scholar 

  30. L. Filipović, M. Romić, D. Romić, V. Filipović, and G. Ondrašek, “Organic matter and salinity modify cadmium soil (phyto)availability,” Ecotoxicol. Environ. Saf. 147, 824–831 (2018). https://doi.org/10.1016/j.ecoenv.2017.09.041

    Article  Google Scholar 

  31. M. Gabarrón, A. Faz, and J. A. Acosta, “Soil or dust for health risk assessment studies in urban environment,” Arch. Environ. Contam. Toxicol. 73 (3), 442–455 (2017). https://doi.org/10.1007/s00244-017-0413-x

    Article  Google Scholar 

  32. K. Golokhvast, T. Vitkina, T. Gvozdenko, V. Kolosov, V. Yankova, E. Kondratieva, A. Gorkavaya, A. Nazarenko, V. Chaika, T. Romanova, A. Karabtsov, J. Perelman, P. Kiku, and A. Tsatsakis, “Impact of atmospheric microparticles on the development of oxidative stress in healthy city/industrial seaport residents,” Oxidative Med. Cell. Longevity 2015, 412173 (2015). https://doi.org/10.1155/2015/412173

    Article  Google Scholar 

  33. C. Gunawardana, P. Egodawatta, and A. Goonetilleke, “Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces,” Environ. Pollut. 184, 44–53 (2014). https://doi.org/10.1016/j.envpol.2013.08.010

    Article  Google Scholar 

  34. H. Jeong and K. Ra, “Characteristics of potentially toxic elements, risk assessments, and isotopic compositions (Cu–Zn–Pb) in the PM10 fraction of road dust in Busan, South Korea,” Atmosphere 12 (9), 1229 (2021). https://doi.org/10.3390/atmos12091229

    Article  Google Scholar 

  35. A. Jonidi Jafari, M. Kermani, R. R. Kalantary, and H. Arfaeinia, “The effect of traffic on levels, distribution and chemical partitioning of harmful metals in the street dust and surface soil from urban areas of Tehran, Iran,” Environ. Earth Sci. 77 (2), 38 (2018). https://doi.org/10.1007/s12665-018-7226-8

    Article  Google Scholar 

  36. N. S. Kasimov, N. E. Kosheleva, D. V. Vlasov, K. S. Nabelkina, and A. V. Ryzhov, “Physicochemical properties of road dust in Moscow,” Geogr. Environ. Sustainability 12 (4), 96–113 (2019). https://doi.org/10.24057/2071-9388-2019-55

    Article  Google Scholar 

  37. N. S. Kasimov, D. V. Vlasov, and N. E. Kosheleva, “Enrichment of road dust particles and adjacent environments with metals and metalloids in eastern Moscow,” Urban Clim. 32, 100638 (2020). https://doi.org/10.1016/j.uclim.2020.100638

    Article  Google Scholar 

  38. R. K. Khan and M. A. Strand, “Road dust and its effect on human health: a literature review,” Epidemiol. Health 40, e2018013 (2018). https://doi.org/10.4178/epih.e2018013

    Article  Google Scholar 

  39. N. E. Kosheleva, D. V. Vlasov, I. D. Korlyakov, and N. S. Kasimov, “Contamination of urban soils with heavy metals in Moscow as affected by building development,” Sci. Total Environ. 636, 854–863 (2018). https://doi.org/10.1016/j.scitotenv.2018.04.308

    Article  Google Scholar 

  40. T. G. Krupnova, O. V. Rakova, S. V. Gavrilkina, E. G. Antoshkina, E. O. Baranov, and O. N. Yakimova, “Road dust trace elements contamination, sources, dispersed composition, and human health risk in Chelyabinsk, Russia,” Chemosphere 261, 127799 (2020). https://doi.org/10.1016/j.chemosphere.2020.127799

    Article  Google Scholar 

  41. E. J. Lam, M. E. Gálvez, M. Cánovas, I. L. Montofré, D. Rivero, and A. Faz, “Evaluation of metal mobility from copper mine tailings in northern Chile,” Environ. Sci. Pollut. Res. 23 (12), 11901–11915 (2016). https://doi.org/10.1007/s11356-016-6405-y

    Article  Google Scholar 

  42. C. Lanzerstorfer, “Toward more intercomparable road dust studies,” Crit. Rev. Environ. Sci. Technol. 51 (8), 826–855 (2021). https://doi.org/10.1080/10643389.2020.1737472

    Article  Google Scholar 

  43. S.-Y. Liang, J.-L. Cui, X.-Y. Bi, X.-S. Luo, and X.-D. Li, “Deciphering source contributions of trace metal contamination in urban soil, road dust, and foliar dust of Guangzhou, southern China,” Sci. Total Environ. 695, 133596 (2019). https://doi.org/10.1016/j.scitotenv.2019.133596

    Article  Google Scholar 

  44. W. Maeaba, S. Prasad, and S. Chandra, “First assessment of metals contamination in road dust and roadside soil of Suva City, Fiji,” Arch. Environ. Contam. Toxicol. 77 (2), 249–262 (2019). https://doi.org/10.1007/s00244-019-00635-8

    Article  Google Scholar 

  45. D. Moskovchenko, R. Pozhitkov, A. Soromotin, and V. Tyurin, “The content and sources of potentially toxic elements in the road dust of Surgut (Russia),” Atmosphere 13 (1), 30 (2022). https://doi.org/10.3390/atmos13010030

    Article  Google Scholar 

  46. O. Nikolaeva, V. Tikhonov, M. Vecherskii, N. Kostina, E. Fedoseeva, and A. Astaikina, “Ecotoxicological effects of traffic-related pollutants in roadside soils of Moscow,” Ecotoxicol. Environ. Saf. 172, 538–546 (2019). https://doi.org/10.1016/j.ecoenv.2019.01.068

    Article  Google Scholar 

  47. P. Pant and R. M. Harrison, “Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review,” Atmos. Environ. 77, 78–97 (2013). https://doi.org/10.1016/j.atmosenv.2013.04.028

    Article  Google Scholar 

  48. T. V. Prokof’eva, A. V. Kiryushin, V. A. Shishkov, and F. A. Ivannikov, “The importance of dust material in urban soil formation: the experience on study of two young technosols on dust depositions,” J. Soils Sediments 17 (2), 515–524 (2017). https://doi.org/10.1007/s11368-016-1546-7

    Article  Google Scholar 

  49. O. Ramírez, A. M. Sánchez de la Campa, F. Amato, T. Moreno, L. F. Silva, and J. D. de la Rosa, “Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity,” Sci. Total Environ. 652, 434–446 (2019). https://doi.org/10.1016/j.scitotenv.2018.10.214

    Article  Google Scholar 

  50. I. C. Rienda and C. A. Alves, “Road dust resuspension: a review,” Atmos. Res. 261, 105740 (2021). https://doi.org/10.1016/j.atmosres.2021.105740

    Article  Google Scholar 

  51. O. N. Romzaykina, V. I. Vasenev, A. Paltseva, Y. V. Kuzyakov, A. Neaman, and E. A. Dovletyarova, “Assessing and mapping urban soils as geochemical barriers for contamination by heavy metal(loid)s in Moscow megapolis,” J. Environ. Qual. 50, 22–37 (2020). https://doi.org/10.1002/jeq2.20142

    Article  Google Scholar 

  52. A. A. Seleznev, I. V. Yarmoshenko, and G. P. Malinovsky, “Urban geochemical changes and pollution with potentially harmful elements in seven Russian cities,” Sci. Rep. 10 (1), 1668 (2020). https://doi.org/10.1038/s41598-020-58434-4

    Article  Google Scholar 

  53. S. Tian, T. Liang, and K. Li, “Fine road dust contamination in a mining area presents a likely air pollution hotspot and threat to human health,” Environ. Int. 128, 201–209 (2019). https://doi.org/10.1016/j.envint.2019.04.050

    Article  Google Scholar 

  54. S. Vanegas, E. M. Trejos, B. H. Aristizábal, G. M. Pereira, J. M. Hernández, J. H. Murillo, O. Ramírez, F. Amato, L. F. O. Silva, N. Y. Rojas, C. Zafra, and J. E. Pachón, “Spatial distribution and chemical composition of road dust in two high-altitude Latin American cities,” Atmosphere 12 (9), 1109 (2021). https://doi.org/10.3390/atmos12091109

    Article  Google Scholar 

  55. K. Vergel, I. Zinicovscaia, N. Yushin, and M. V. Frontasyeva, “Heavy metal atmospheric deposition study in Moscow region, Russia,” Bull. Environ. Contam. Toxicol. 103 (3), 435–440 (2019). https://doi.org/10.1007/s00128-019-02672-4

    Article  Google Scholar 

  56. D. Vlasov, N. Kasimov, I. Eremina, G. Shinkareva, and N. Chubarova, “Partitioning and solubilities of metals and metalloids in spring rains in Moscow megacity,” Atmos. Pollut. Res. 12 (1), 255–271 (2021). https://doi.org/10.1016/j.apr.2020.09.012

    Article  Google Scholar 

  57. D. Vlasov, N. Kosheleva, and N. Kasimov, “Spatial distribution and sources of potentially toxic elements in road dust and its PM10 fraction of Moscow megacity,” Sci. Total Environ. 761, 143267 (2021). https://doi.org/10.1016/j.scitotenv.2020.143267

    Article  Google Scholar 

  58. D. Vlasov, J. Vasil’chuk, N. Kosheleva, and N. Kasimov, “Dissolved and suspended forms of metals and metalloids in snow cover of megacity: partitioning and deposition rates in Western Moscow,” Atmosphere 11, 907 (2020). https://doi.org/10.3390/atmos11090907

    Article  Google Scholar 

  59. C. L. S. Wiseman, C. Levesque, and P. E. Rasmussen, “Characterizing the sources, concentrations and resuspension potential of metals and metalloids in the thoracic fraction of urban road dust,” Sci. Total Environ. 786, 147467 (2021). https://doi.org/10.1016/j.scitotenv.2021.147467

    Article  Google Scholar 

  60. S. Yoon, S. Han, K.-J. Jeon, and S. Kwon, “Effects of collected road dusts on cell viability, inflammatory response, and oxidative stress in cultured human corneal epithelial cells,” Toxicol. Lett. 284, 152–160 (2018). https://doi.org/10.1016/j.toxlet.2017.12.012

    Article  Google Scholar 

  61. J. Zhang, J. Peng, C. Song, C. Ma, Z. Men, J. Wu, L. Wu, T. Wang, X. Zhang, S. Tao, S. Gao, P. K. Hopke, and H. Mao, “Vehicular non-exhaust particulate emissions in Chinese megacities: Source profiles, real-world emission factors, and inventories,” Environ. Pollut. 266, 115268 (2020). https://doi.org/10.1016/j.envpol.2020.115268

    Article  Google Scholar 

  62. J. Zhang, L. Wu, Y. Zhang, F. Li, X. Fang, and H. Mao, “Elemental composition and risk assessment of heavy metals in the PM10 fractions of road dust and roadside soil,” Particuology 44, 146–152 (2019). https://doi.org/10.1016/j.partic.2018.09.003

    Article  Google Scholar 

  63. J. Zheng, C. Zhan, R. Yao, J. Zhang, H. Liu, T. Liu, W. Xiao, X. Liu, and J. Cao, “Levels, sources, markers and health risks of heavy metals in PM2.5 over a typical mining and metallurgical city of Central China,” Aerosol Sci. Eng. 2 (1), 1–10 (2018). https://doi.org/10.1007/s41810-017-0018-9

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to L.A. Berberdaya, N.Yu. Kuzminskaya, K.S. Nabelkina, A.V. Ryzhov, A.G. Tsykhman, and G.L. Shinkareva for their participation in field and laboratory works and to V.R. Bityukova for the provided data on the volumes of vehicle exhausts.

Funding

Field and laboratory works were carried out under contract no. 04/2017-И with the Russian Geographical Society. The analysis and interpretation of data on the contents of heavy metals and metalloids in the road dust particles and roadside soils and the assessment of geochemical relationships were supported by the Russian Science Foundation (project no. 19-77-30004). The factors favoring the accumulation of heavy metals and metalloids in the roadside soils and road dust were studied within the framework of the Development program of the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University “Future Planet and Global Environmental Change.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Kosheleva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Konyushkov

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, D.V., Kukushkina, O.V., Kosheleva, N.E. et al. Levels and Factors of the Accumulation of Metals and Metalloids in Roadside Soils, Road Dust, and Their PM10 Fraction in the Western Okrug of Moscow. Eurasian Soil Sc. 55, 556–572 (2022). https://doi.org/10.1134/S1064229322050118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322050118

Keywords:

Navigation