Skip to main content

Advertisement

Log in

Soil or Dust for Health Risk Assessment Studies in Urban Environment

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

To identify the best material (soil or dust) to be selected for health-risk assessment studies, road dust and urban soil from three cities with different population densities were collected, and size fractions were analysed for metal content (Pb, Zn, Cu, Cd, Cr, Co, and Ni). Results showed similar distribution of the size particles among cities, predominating fractions between 75 and 2000 μm in road dust and particles below 75 μm in soil. Metals were mainly bound to PM10 in both soil and road dust increasing the risk of adverse health effects, overall through inhalation exposure. The risk assessment showed that the most hazardous exposure pathway was the ingestion via, followed by dermal absorption and inhalation route. Values of hazard quotient showed that the risk for children due to the ingestion and dermal absorption was higher than adults, and slightly larger at PM10 comparing to <75-μm fraction for the inhalation route. Higher risk values were found for road dust, although any hazard index or cancer risk index value did not overreach the safe value of 10−6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta JA, Faz A, Arocena JM, Debela F, Martínez-Martínez S (2009) Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia City (Spain). Geoderma 149:101–109

    Article  CAS  Google Scholar 

  • Acosta JA, Faz A, Kalbitz K, Jansen B, Martinez-Martinez S (2011) Heavy metal concentrations in particle size fractions from street dust of Murcia (Spain) as the basis for risk assessment. J Environ Monit 13:3087–3092

    Article  CAS  Google Scholar 

  • Acosta JA, Gabarrón M, Faz A, Martínez-Martínez S, Zornoza R, Arocena JM (2015) Influence of population density on the concentration and speciation of metals in the soil and street dust from urban areas. Chemosphere 134:328–337

    Article  CAS  Google Scholar 

  • Amato F, Pandolfi M, Viana M, Querol X, Alastuey A, Moreno T (2009) Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos Environ 43:1650–1659

    Article  CAS  Google Scholar 

  • Boisa N, Entwistle J, Dean JR (2014) A new simple, low-cost approach for generation of the PM10 fraction from soil and related materials: application to human health risk assessment. Anal Chim Acta 852:97–104

    Article  CAS  Google Scholar 

  • Cao Z, Yang Y, Lu J, Zhang C (2011) Atmospheric particle characterization, distribution, and deposition in Xi’an, Shaanxi Province, Central China. Environ Pollut 159:577–584

    Article  CAS  Google Scholar 

  • Chen H, Teng Y, Lu S, Wang Y, Wu J, Wang J (2016) Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere 144:1002–1011

    Article  CAS  Google Scholar 

  • De Miguel E, Jimenez de Grado J, Llamas JF, Martin-Dorado A, Mazadiego LF (1998) The overlooked contribution of compost application of the trace element load in the urban soil of Madrid (Spain). Sci Total Environ 215:113–122

    Article  Google Scholar 

  • De Miguel E, Iribarren I, Chacón E, Ordoñez A, Charlesworth S (2007) Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 66:505–513

    Article  Google Scholar 

  • Dehghani S, Moore F, Keshavarzi B, Hale BA (2017) Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicol Environ Saf 136:92–103

    Article  CAS  Google Scholar 

  • Du Y, Gao B, Zhou H, Ju X, Hao H, Yin S (2013) Health risk assessment of heavy metals in road dusts in urban parks of Beijing, China. Proc Environ Sci 18:299–309

    Article  CAS  Google Scholar 

  • Duong TT, Lee BK (2011) Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J Environ Manag 92:554–562

    Article  CAS  Google Scholar 

  • Ferreira-Baptista L, De Miguel E (2005) Geochemistry and risk assessment of Street dust in Luanda, Angola: a tropical urban environment. Atmos Environ 39:4501–4512

    Article  CAS  Google Scholar 

  • García-Rico L, Meza-Figueroa D, Gandolfi A, Del Rio-salas R, Romero F, Meza-Montenegro MM (2016) Dust-metal sources in an urbanized arid zone: implications for health-Risk assessment. Arch Environ Contam Toxicol 70:522–533

    Article  Google Scholar 

  • Gope M, Masto RE, George J, Hoque RR, Balachandran S (2017) Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicol Environ Saf 138:231–241

    Article  CAS  Google Scholar 

  • Han Y, Cao J, Posmentier E, Fung K, Tian H, An Z (2008) Particulate-associated potentially harmful elements in urban road dusts in Xi’an, China. Appl Geochem 23:835–845

    Article  CAS  Google Scholar 

  • Hou Q, An X, Tao Y, Sun Z (2016) Assessment of resident’s exposure level and health economic costs of PM10 in Beijing from 2008 to 2012. Sci Total Environ 563–564:557–565

    Article  Google Scholar 

  • Huang J, Liu W, Zeng W, Li F, Huang X, Gu Y, Shi L, Shi Y, Wan J (2016) An exploration of spatial human health risk assessment of soil toxic metals under different land uses using sequential indicator simulation. Ecotoxicol Environ Saf 129:199–209

    Article  CAS  Google Scholar 

  • Izquierdo M, De Miguel E, Ortega MF, Mingot J (2015) Bioaccessibility of metals and human health risk assessment in community urban gardens. Chemosphere 135:312–318

    Article  CAS  Google Scholar 

  • Kong S, Lu B, Ji Y, Zhao X, Chen L, Li Z, Han B, Bai Z (2011) Levels, risk assessment and sources of PM10 fraction heavy metals in four types dust from a coal-based city. Microchem J 98:280–290

    Article  CAS  Google Scholar 

  • Li H, Qian X, Hu W, Wang Y, Gao H (2013) Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Sci Total Environ 456–457:212–221

    Article  Google Scholar 

  • Li H-H, Chen L-J, Yu L, Guo Z-B, Shan C-Q, Lin J-Q, Gu Y-G, Yang Z-B, Yang Y-X, Shao J-R, Zhu X-M, Cheng Z (2017a) Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci Total Environ 586:1076–1084

    Article  CAS  Google Scholar 

  • Li HX, Ji HB, Shi CJ, Gao Y, Zhang Y, Xu XY, Ding HJ, Tang L, Xing YX (2017b) Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health. Chemosphere 172:505–515

    Article  CAS  Google Scholar 

  • Lim H, Lee J, Chon H, Sager M (2008) Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songche on Au–Ag mine in Korea. J Geochem Explor 96:223–230

    Article  CAS  Google Scholar 

  • Liu E, Yan T, Birch G, Zh Y (2014) Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci Total Environ 476–477:522–531

    Article  Google Scholar 

  • Ljung K, Torin A, Smirk M, Maley F, Cook A, Weinstein P (2008) Extracting dust from soil: a simple solution to a tricky task. Sci Total Environ 407:589–593

    Article  CAS  Google Scholar 

  • Lu X, Wu X, Wang Y, Chen H, Gao P, Fu Y (2014) Risk assessment of toxic metals in street dust from a medium-sized industrial city of China. Ecotox Environ Saf 106:154–163

    Article  CAS  Google Scholar 

  • Luo XS, Xue Y, Wang YL, Cang L, Xu B, Ding J (2015) Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere 127:152–157

    Article  CAS  Google Scholar 

  • Porta J, López-Acevedo M, Roquero C (1999) Edafología para la agricultura y el medio ambiente, 2 Edición. Ediciones Mundi-Prensa, Madrid, España

  • Qin JH, Nworie OE, Lin CX (2016) Particle size effects on bioaccessible amounts of ingestible soil-borne toxic elements. Chemosphere 159:442–448

    Article  CAS  Google Scholar 

  • RAIS-The Risk Assessment Information System (2016) https://rais.ornl.gov/tools/tox_profiles.html. Accessed April 2016

  • Risser JA, Baker DE (1990) Testing soils for toxic metals. In: Westerman RL (ed) Soil testing and plant analysis. Special Publication, 3.3rd edn. Soil Science Society of America, Madison, pp 275–298

    Google Scholar 

  • Shi G, Chen Z, Xu S, Zhang J, Wang L, Bi C, Teng J (2008) Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ Pollut 156:251–260

    Article  CAS  Google Scholar 

  • Sun Y, Zhou Q, Xie X, Liu R (2010) Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J Hazard Mater 174:455–462

    Article  CAS  Google Scholar 

  • Tang Y, Han G (2017) Characteristics of major elements and heavy metals in atmospheric dust in Beijing, China. J Geochem Explor 176:114–119

    Article  CAS  Google Scholar 

  • Teng Y, Li J, Wu J, Lu S, Wang Y, Chen H (2015) Environmental distribution and associated human health risk due to trace elements and organic compounds in soil in Jiangxi province, China. Ecotoxicol Environ Saf 122:406–416

    Article  CAS  Google Scholar 

  • US-EPA (1986) Superfund public health evaluation manual. Office of Emergency and Remedial Response. U.S. Environmental Protection Agency Washington, 20460. EPA/540/1-86/060

  • US-EPA (1989) Risk assessment guidance for superfund volume I human health evaluation manual (Part A). Office of Emergency and Remedial Response. U.S. Environmental Protection Agency Washington, 20450. EPA/540/1-89/002

  • US-EPA (1992a) Guidelines for exposure assessment. Risk Assessment Forum. U.S. Environmental Protection Agency Washington, EPA/600/Z-92/001

  • US-EPA (1992b) Supplemental guidance to RAGS: Calculating the Concentration Term. Office of Solid Waste and Emergency Response Washington, 20460. PB92-963373

  • US-EPA (1996) Soil screening guidance: Technical Background Document. Office of Solid Waste and Emergency Response. Washington, 20460. EPA/540/R95/128

  • US-EPA (2002a) Supplemental guidance for developing soil screening levels for superfund sites. Office of Solid Waste and Emergency Response. OSWER 9355.4-24

  • US-EPA (2002b) Calculating upper confidence limits for exposure point concentrations at hazardous waste sites. Office of Emergency and Remedial Response U.S. Environmental Protection Agency Washington, 20460. OSWER 9285.6-10

  • US-EPA (2004) Risk assessment guidance for superfund volume I: human health evaluation manual (Part E, Supplemental Guidance for Dermal Risk Assessment). Office of Superfund Remediation and Technology Innovation U.S. Environmental Protection Agency Washington, EPA/540/R/99/005

  • US-EPA (2009) Integrated science assessment for particulate matter. National Center for Environmental Assessment-RTP Division. Office of Research and Development. U.S. Environmental Protection Agency. Research Triangle Park, EPA/600/R-08/139F

  • US-EPA (2011a) Exposure factors handbook: 2011 edition. National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, 20460. EPA/600/R-09/052F

  • US-EPA (2011b) Highlights of the exposure factors handbook. National Center for Environmental Assessment.Office of Research and Development, Washington, 20460. EPA/600/R-10/030

  • US-EPA (2016a) in: https://www.epa.gov/risk/human-health-risk-assessment. Accessed April 2016

  • US-EPA (2016b) https://www3.epa.gov/pm/health.html. Accessed April 2016

  • Van der Berg R (1995) Human exposure to soil contamination: a qualitative and quantitative analysis towards proposal for human toxicological intervention values. Report no. 725201011. National institute of Public Health and Environmental protection. Bilthoven

  • Wang J, Li S, Cui X, Li H, Qian X, Wang C, Sun Y (2016) Bioaccessibility, sources and health risk assessment of trace metals in urban park dust in Nanjing, Southeast China. Ecotoxicol Environ Saf 128:161–170

    Article  CAS  Google Scholar 

  • Wong CSC, Li X, Thornton I (2006) Urban environmental geochemistry of trace metals. Environ Pollut 142:1–16

    Article  CAS  Google Scholar 

  • Zhang C, Qiao Q, Appel E, Huang B (2012) Discriminating sources of anthropogenic heavy metals in urban street dusts using magnetic and chemical methods. J Geochem Explor 119–120:60–75

    Article  Google Scholar 

Download references

Acknowledgements

Financial support to conduct this study was provided by the Fundación Séneca of Comunidad Autónoma de Murcia (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Acosta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabarrón, M., Faz, A. & Acosta, J.A. Soil or Dust for Health Risk Assessment Studies in Urban Environment. Arch Environ Contam Toxicol 73, 442–455 (2017). https://doi.org/10.1007/s00244-017-0413-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-017-0413-x

Keywords

Navigation