Skip to main content
Log in

Effect of Humidity on the Stable Carbon Isotopic Composition of Soil Organic Matter in the Baikal Region

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The stable carbon isotopes of organic matter in humus horizons of soils of the Baikal region have been studied. A wide range of soil forming factors makes it possible to identify the most important ones that determine the carbon isotopic composition of organic matter. Depending on the landscape and climatic conditions, the δ13C values range from –29.91 to –22.98‰. The lowest values are typical of the landscapes with the highest humidity. Analysis of the carbon fractionation factors suggests that the influence of climatic factors on 13C discrimination during the photosynthesis by C3 plants plays the leading role in the observed differences in the isotopic composition of soils. With an increase in precipitation during the vegetation season, the δ13C values in soil organic matter decrease by 1.35‰ for every 100 mm of precipitation. These values are in good agreement with isotopic gradients in the adjacent areas of Mongolia and China and reflect a considerable sensitivity of plants that form soil organic matter to the changes in humidity. Although pairwise linear regressions do not show any significant dependence of the δ13C values on temperature, its effect appears in an indirect manner via moistening index displaying a maximum negative correlation. Thus, not only precipitation, but also heat to moisture ratio during the vegetation season with the most intensive biological and soil processes to the greatest degree influence the carbon isotopic composition of soil organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. T. V. Aristovskaya, Microbiology of Pedogenic Processes (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  2. V. I. Volkovintser, Steppe Cryoarid Soils (Nauka, Novosibirsk, 1978) [in Russian].

    Google Scholar 

  3. V. A. Golubtsov, “Stable carbon isotopic composition of organic matter of the Late Pleistocene and Holocene soils of the Baikal region,” Eurasian Soil Sci. 53, 724–738 (2020). https://doi.org/10.1134/S1064229320060046

    Article  Google Scholar 

  4. V. A. Golubtsov, A. A. Cherkashina, and O. S. Khokhlova, “Carbonate profile of soils in the Baikal region: structure, age, and formation conditions,” Eurasian Soil Sci. 52, 1515–1532 (2019). https://doi.org/10.1134/S1064229319120056

    Article  Google Scholar 

  5. I. G. Gringof and V. N. Pavlova, Fundamentals of Agricultural Meteorology, Vol. 3, Part 1: Fundamentals of Agroclimatology, Part 2: Impact of Climate Change on Ecosystems, Agriculture, and Agricultural Production (Obninsk, 2013) [in Russian].

  6. I. V. Ivanov, “Humus profile of soils?” in Evolution of Soils and Soil Cover. Theory, Diversity of Natural Evolution, and Anthropogenic Soil Transformation (GEOS, Moscow, 2015), pp. 110–118.

  7. A. A. Kozlova and A. P. Makarova, Ecological Factors of Pedogenesis in the Southern Cis-Baikal Region (Irkutsk State Univ., Irkutsk, 2012) [in Russian].

    Google Scholar 

  8. V. A. Kuz’min, Soils of Cis-Baikal and North Transbaikal Regions (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  9. O. V. Menyailo and B. A. Hungate, “Carbon and nitrogen stable isotopes in forest soils of Siberia,” Dokl. Earth Sci. 409, 747–749 (2006).

    Article  Google Scholar 

  10. E. G. Morgun, I. V. Kovda, Ya. G. Ryskov, and S. A. Oleinik, “Prospects and problems of using the methods of geochemistry of stable carbon isotopes in soil studies,” Eurasian Soil Sci. 41, 265–275 (2008).

    Article  Google Scholar 

  11. Scientific Reference Handbook on Climate in the USSR, Ser. 3: Long-Term Data, Parts 1–6, No. 23: Buryat ASSR, Chita Oblast (Gidrometeoizdat, Leningrad, 1989) [in Russian].

  12. Scientific Reference Handbook on Climate in the USSR, Ser. 3: Long-Term Data, Parts 1–6, No. 22: Irkutsk Oblast and Western Part of Buryat ASSR (Gidrometeoizdat, Leningrad, 1991) [in Russian].

  13. S. Sh. Nimaeva, “Biological activity of brown mountain forest soils in the Cis-Baikal region,” Pochvovedenie, No. 4, 66–72 (1990).

    Google Scholar 

  14. S. Sh. Nimaeva, Microbiology of Cryoarid Soils in Transbaikalia (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  15. N. N. Pigareva, T. M. Korsunova, and N. A. P’yankova, “Specific features of the humus status in soils of Buryatia,” Eurasian Soil Sci. 41, 386–393 (2008).

    Article  Google Scholar 

  16. G. D. Chimitdorzhieva, Organic Matter of Cold Soils (Buryat Scientific Center, Siberian Branch, Russian Academy of Sciences, Ulan-Ude, 2016) [in Russian].

  17. E. O. Chimitdorzhieva and G. D. Chimitdorzhieva, “Accumulation and dynamics of carbon-biomass in the krioarid soils of Transbaikalia,” Arid Ecosyst. 4, 69–74 (2014).

    Article  Google Scholar 

  18. G. I. Agren, E. Bossata, and J. Balesdent, “Isotope discrimination during decomposition of organic matter: a theoretical analysis,” Soil Sci. Soc. Am. J. 60, 1121–1126 (1996).

    Article  Google Scholar 

  19. D. B. Andreeva, M. Zech, B. Glaser, M. A. Erbajeva, G. D. Chimitdorgieva, O. D. Ermakova, and W. Zech, “Stable isotope (δ13C, δ15N, δ18O) record of soils in Buryatia, southern Siberia: Implications for biogeochemical and paleoclimatic interpretations,” Quat. Int. 290–291, 82–94 (2013). https://doi.org/10.1016/j.quaint.2012.10.054

    Article  Google Scholar 

  20. N. C. Arens, A. H. Jahren, and R. Amundson, “Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide?” Paleobiology 26, 137–164 (2000.

    Article  Google Scholar 

  21. S. Basu, S. Ghosh, and P. Sanyal, “Spatial heterogeneity in the relationship between precipitation and carbon isotopic discrimination in C3 plants: Inferences from a global compilation,” Global Planet. Change 176, 123–131 (2019). https://doi.org/10.1016/j.gloplacha.2019.02.002

    Article  Google Scholar 

  22. M. I. Bird and P. Pousai, “Variations of δ13C in the surface soil organic carbon pool,” Global Biogeochem. Cycles 11, 313–322 (1997.

    Article  Google Scholar 

  23. E. Blagodatskaya, T. Yuyukina, S. Blagodatsky, and Y. Kuzyakov, “Turnover of soil organic matter and of microbial biomass under C3–C4 vegetation change: consideration of 13C fractionation and preferential substrate utilization,” Soil Biol. Biochem. 43, 159–166 (2011). https://doi.org/10.1016/j.soilbio.2010.09.028

    Article  Google Scholar 

  24. B. Boström, D. Comstedt, and A. Ekblad, “Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter,” Oecologia. 153, 89–98 (2007). https://doi.org/10.1007/s00442-007-0700-8

    Article  Google Scholar 

  25. T. W. Boutton, A. T. Harrison, and B. N. Smith, “Distribution of biomass of species differing in photosynthetic pathway along an altitudinal transect in southern Wyoming grassland,” Oecologia 45, 287–298 (1980.

    Article  Google Scholar 

  26. D. R. Bowling, N. G. McDowell, B. J. Bond, B. E. Law, and J. R. Ehleringer, “13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit,” Oecologia 131, 113–124 (2002.

    Article  Google Scholar 

  27. C. Bowsher, M. Steer, and A. Tobin, Plant Biochemistry (Garland, New York, 2008).

    Book  Google Scholar 

  28. M. Camino-Serrano, M. Tifafi, J. Balesdent, C. Hatté, J. Peñuelas, S. Cornu, and B. Guenet, “Including stable carbon isotopes to evaluate the dynamics of soil carbon in the land-surface model ORCHIDEE,” J. Adv. Model. Earth Syst. 11, 3650–3669 (2019). https://doi.org/10.1029/2018MS001392

    Article  Google Scholar 

  29. T. E. Cerling, J. Quade, Y. Wang, and J. R. Bowman, “Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators,” Nature 341, 138–139 (1989.

    Article  Google Scholar 

  30. Y. Chen, H. Lu, E. Zhang, H. Zhang, Z. Xu, S. Yi, and S.-Y. Wu, “Test stable carbon isotopic composition of soil organic matters as a proxy indicator of past precipitation: study of the sand fields in northern China,” Quat. Int. 372, 79–86 (2015). https://doi.org/10.1016/j.quaint.2014.10.062

    Article  Google Scholar 

  31. G. J. Collatz, J. A. Berry, and J. S. Clark, “Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past and future,” Oecologia 114, 441–454 (1998.

    Article  Google Scholar 

  32. S. L. Connin, X. Feng, and R. A. Virginia, “Isotopic discrimination during long-term decomposition in an arid land ecosystem,” Soil Biol. Biochem. 33, 41–51 (2001.

    Article  Google Scholar 

  33. Fifth generation of ECMWF atmospheric re-analyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), 2017). https://cds. climate.copernicus.eu/cdsapp#!/home

  34. J. M. Craine, N. Fierer, and K. K. McLauchlan, “Widespread coupling between the rate and temperature sensitivity of organic matter decay,” Nat. Geosci. 3, 854–857 (2010). https://doi.org/10.1038/NGEO1009

    Article  Google Scholar 

  35. A. F. Diefendorf, K. E. Mueller, S. L. Wing, P. L. Koch, and K. H. Freeman, “Global patterns in leaf 13C discrimination and implications for studies of past and future climate,” Proc. Natl. Acad. Sci. U.S.A. 107, 5738–5743 (2010). https://doi.org/10.1073/pnas.0910513107

    Article  Google Scholar 

  36. A. Ekblad, G. Nyberg, and P. Högberg, “13C-discrimination during microbial respiration of added C3-, C4- and 13C-labelled sugars to a C3-forest soil,” Oecologia 131, 245–249 (2002). https://doi.org/10.1007/s00442-002-0869-9

    Article  Google Scholar 

  37. G. D. Farquhar, J. R. Ehleringer, and K. T. Hubick, “Carbon isotope discrimination and photosynthesis,” Ann. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989.

    Article  Google Scholar 

  38. Z.-D. Feng, L. X. Wang, Y. H. Ji, L. L. Guo, X. Q. Lee, and S. I. Dworkin, “Climatic dependency of soil organic carbon isotopic composition along the S–N Transect from 34° N to 52° N in central-east Asia,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 257, 335–343 (2008). https://doi.org/10.1016/j.palaeo.2007.10.026

    Article  Google Scholar 

  39. C. T. Garten, P. J. Hanson, D. E. Todd, B. B. Lu, and D. J. Brice, “Natural 15N- and 13C-abundance as indicators of forest nitrogen status and soil carbon dynamics,” in Stable Isotopes in Ecology and Environmental Science (Blackwell, Oxford, 2008), Ch. 3, pp. 61–82.

    Google Scholar 

  40. P. Gioacchini, A. Masia, F. Canaccini, P. Boldreghini, and G. Tonon, “Isotopic discrimination during litter decomposition and δ13C and δ15N soil profiles in a young artificial stand and in an old floodplain forest,” Isot. Environ. Health Stud. 42 (2), 135–149 (2006). https://doi.org/10.1080/10256010600671357

    Article  Google Scholar 

  41. J. Koarashi, T. Iida, and T. Asano, “Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest,” J. Environ. Radioact. 79, 137–156 (2005). https://doi.org/10.1016/j.jenvrad.2004.06.002

    Article  Google Scholar 

  42. M. J. Kohn, “Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate,” Proc. Natl. Acad. Sci. U.S.A. 107, 19691–19695 (2010). https://doi.org/10.1073/pnas.1004933107

    Article  Google Scholar 

  43. J. Ma, W. Sun, H. Zhang, D. Xia, C. An, and F. Chen, “Stable carbon isotope characteristics of different plant species and surface soil in arid regions,” Front. Earth Sci. China 3 (1), 107–111 (2009). https://doi.org/10.1007/s11707-009-0015-7

    Article  Google Scholar 

  44. J. M. Melillo, J. D. Aber, and A. E. Linkins, “Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter,” Plant Soil 115, 189–198 (1989).

    Article  Google Scholar 

  45. K. J. Nadelhoffer and B. Fry, “Controls of natural nitrogen-15 and carbon-13 abundances in forest soil organic matter,” Soil Sci. Soc. Am. J. 52, 1633–1640 (1988).

    Article  Google Scholar 

  46. A. Nissenbaum and K. M. Schallinger, “The distribution of the stable carbon isotope (13C/12C) in fractions of soil organic matter,” Geoderma 11, 137–145 (1974).

    Article  Google Scholar 

  47. L. C. Nordt, T. W. Boutton, C. T. Hallmark, and M. R. Waters, “Late Quaternary vegetation and climate changes in Central Texas based on the isotopic composition of organic carbon,” Quart. Res. 41, 109–120 (1994).

    Article  Google Scholar 

  48. M. H. O’Leary, “Carbon isotopes in photosynthesis,” Bioscience 38, 328–336 (1988).

    Article  Google Scholar 

  49. Z. Rao, W. Guo, J. Cao, F. Shi, H. Jiang, and C. Li, “Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: a global review,” Earth-Sci. Rev. 165, 110–119 (2017). https://doi.org/10.1016/j.earscirev.2016.12.007

    Article  Google Scholar 

  50. Z. G. Rao, Z. Y. Zhu, G. D. Jia, F. H. Chen, L. Barton, J. W. Zhang, and M. R. Qiang, “Relationship between climatic conditions and the relative abundance of modern C3 and C4 plants in three regions around the North Pacific,” Chin. Sci. Bull. 55, 1931–1936 (2010).

    Article  Google Scholar 

  51. R. F. Sage, D. A. Wedin, and M. Li, “The biogeography of C4 photosynthesis, patterns and controlling factors,” in C4 Plant Biology (Academic, Toronto, 1999), pp. 313–373.

    Google Scholar 

  52. V. F. Schwab, Y. Garcin, D. Sachse, G. Todou, O. Séné, J.-M. Onana, G. Achoundong, and G. Gleixner, “Effect of aridity on δ13C and δD values of C3 plant- and C4 graminoid-derived leaf wax lipids from soils along an environmental gradient in Cameroon (Western Central Africa),” Org. Geochem. 78, 99–109 (2015). https://doi.org/10.1016/j.orggeochem.2014.09.007

    Article  Google Scholar 

  53. U. Seibt, A. Rajabi, H. Griffiths, and J. Berry, “Carbon isotopes and water use efficiency: sense and sensitivity,” Oecologia 155, 441–454 (2008). https://doi.org/10.1007/s00442-007-0932-7

    Article  Google Scholar 

  54. N. N. Voropay, A. A. Ryazanova, and E. A. Dyukarev, “High-resolution bias-corrected precipitation data over South Siberia, Russia,” Atmos. Res. 254, 105528 (2021). https://doi.org/10.1016/j.atmosres.2021.105528

    Article  Google Scholar 

  55. G. Wang, J. Li, X. Liu, and X. Li, “Variations in carbon isotope ratios of plants across a temperature gradient along the 400 mm isoline of mean annual precipitation in north China and their relevance to paleovegetation reconstruction,” Quat. Sci. Rev. 63, 83–90 (2013). https://doi.org/10.1016/j.quascirev.2012.12.004

    Article  Google Scholar 

  56. J. G. Wynn, “Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: implications for paleoecological interpretations of paleosols,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 251, 437–448 (2007). https://doi.org/10.1016/j.palaeo.2007.04.009

    Article  Google Scholar 

  57. J. G. Wynn, J. W. Harden, and T. L. Fries, “Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin,” Geoderma 131, 89–109 (2006). https://doi.org/10.1016/j.geoderma.2005.03.005

    Article  Google Scholar 

  58. D. Zhang, Y. Yang, and M. Ran, “Variations of surface soil δ13Corg in the different climatic regions of China and paleoclimatic implication,” Quat. Int. 536, 92–102 (2020). https://doi.org/10.1016/j.quaint.2019.12.015

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to M.A. Bronnikova for her assistance in field studies in Transbaikalia and to E.P. Zazovskaya and S.M. Turchinskaya for isotope measurements.

Funding

The work was supported by the state assignment (projects nos. AAAA-A21-121012190055-7 and AAAA-A21-121012190056-4) and Russian Foundation for Basic Research (project no. 20-04-00142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Golubtsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubtsov, V.A., Vanteeva, Y.V. & Voropay, N.N. Effect of Humidity on the Stable Carbon Isotopic Composition of Soil Organic Matter in the Baikal Region. Eurasian Soil Sc. 54, 1463–1474 (2021). https://doi.org/10.1134/S1064229321100069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321100069

Keywords:

Navigation