Skip to main content
Log in

The Isotopic Composition of Carbon in Soil Lipids in the Oil and Gas Development Area in Volgograd Oblast, Russia

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Research data on the isotopic composition of carbon in soil lipids in the Zhirnovskoe and Bakhmet’evskoe oil and gas fields in the Medveditsa River basin, Volgograd oblast, Russia, are analyzed. Oil and atmospheric soil pollution is recorded. The variations in the isotopic composition are determined by both anthropogenic factors and the diversity of natural conditions. The isotopic composition of carbon in the lipids of the interfluvial soils (chernozems) is heavier (–26.9 to –29.2‰) than that in the alluvial soils (–29.4 to –31.3‰) because of the differences in the moistening and temperature conditions. Oil pollution appears as a lighter isotopic composition (–29.3 to –29.8‰) since oil isotopic composition is in general somewhat lighter (–28.4 to –30.6‰) as compared with unpolluted soils. Urban and transport infrastructure makes the isotopic composition of atmospheric CO2 lighter, thereby influencing the δ13С values of plants and soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. F. A. Alekseev, V. S. Lebedev, and V. M. Ovsyannikov, Isotopic Composition of Gas Carbon of Biochemical Origin (Nedra, Moscow, 1973) [in Russian].

    Google Scholar 

  2. V. A. Brylev and N. O. Ryabinina, “Physical-geographic (landscape) zonation of Volgograd oblast,” Strezhen’, No. 2, 12–23 (2001).

  3. E. M. Galimov, Geochemistry of Stable Carbon Isotopes (Nedra, Moscow, 1968) [in Russian].

    Google Scholar 

  4. V. B. Dambaev, T. G. Banzaraktsaeva, L. B. Buyantueva, B. B. Namsaraev, and A. M. Zyakun, “Carbon isotopic variations in vegetation and soils of steppe pastures of inner Asia,” Geogr. Prirod. Resur., No. 2, 118–124 (2016).

  5. M. I. Makarov, T. I. Malysheva, A. A. Goncharov, and A. V. Tiunov, “Isotopic composition of carbon in humus acids of Albic Retisols and Luvic Chernozems,” Eurasian Soil Sci. 53, 430–435 (2020). https://doi.org/10.1134/S1064229320040092

    Article  Google Scholar 

  6. E. G. Morgun, I. V. Kovda, Ya. G. Ryskov, and S. A. Oleinik, “Prospects and problems of using the methods of geochemistry of stable carbon isotopes in soil studies,” Eurasian Soil Sci. 41, 265–275 (2008).

    Article  Google Scholar 

  7. N. V. Shurlaeva and N. O. Ryabinina, “Landscape-ecological conditions of Zhirnovskii district, Volgograd oblast,” Vopr. Stepoved. 10, 127–131 (2013).

    Google Scholar 

  8. J. Aguilera and L. D. Whigham, “Using the 13C/12C carbon isotope ratio to characterize the emission sources of airborne particulate matter: a review of literature,” Isot. Environ. Health Stud. 54 (6), 573–587 (2018).

    Article  Google Scholar 

  9. V. E. Andrusevich, M. H. Engel, and J. E. Zumberge, “Effects of paleolatitude on the stable carbon isotope composition of crude oils,” Geology 28 (9), 847–850 (2000).

    Article  Google Scholar 

  10. J. Balesdent, G. H. Wagner, and A. Mariotti, “Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance,” Soil Sci. Soc. Am. J. 52 (1), 118–124 (1988).

    Article  Google Scholar 

  11. V. Čada, H. Šantrůčková, J. Šantrůček, L. Kubištová, M. Seedre, and M. Svoboda, “Complex physiological response of Norway Spruce to atmospheric pollution—Decreased carbon isotope discrimination and unchanged tree biomass increment,” Front. Plant Sci. 7, 805 (2016).

    Article  Google Scholar 

  12. E. A. Canuel, K. H. Freeman, and S. G. Wakeham, “Isotopic compositions of lipid biomarker compounds in estuarine plants and surface sediments,” Limnol. Oceanogr. 42 (7), 1570–1583 (1997).

    Article  Google Scholar 

  13. E. T. Degens, “Biogeochemistry of stable carbon isotopes,” in Organic Geochemistry (Springer-Verlag, Berlin, 1969), pp. 304–329.

    Google Scholar 

  14. A. F. Diefendorf, K. E. Mueller, S. L. Wing, P. L. Koch, and K. H. Freeman, “Global patterns in leaf 13C discrimination and implications for studies of past and future climate,” Proc. Natl. Acad. Sci. U.S.A. 107 (13), 5738–5743 (2010).

    Article  Google Scholar 

  15. A. F. Diefendorf and E. J. Freimuth, “Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: a review,” Org. Geochem. 103, 1–21 (2017).

    Article  Google Scholar 

  16. H. Dinel, M. Schnitzer, and G. R. Mehuys, “Soil lipids: origin, nature, content, decomposition, and effect on soil physical properties,” Soil Biochem. 6, 397–429 (1990).

    Google Scholar 

  17. A. Fernandez-Cortes, R. Perez-Lopez, S. Cuezva, J. M. Calaforra, J. C. Cañaveras, and S. Sanchez-Moral, “Geochemical fingerprinting of rising deep endogenous gases in an active hypogenic karst system,” Geofluids 2018, 1–19 (2018).

    Article  Google Scholar 

  18. R. J. Francey and G. D. Farquhar, “An explanation of 13C/12C variations in tree rings,” Nature 297 (5861), 28–31 (1982).

    Article  Google Scholar 

  19. N. Gentile, R. T. Siegwolf, P. Esseiva, S. Doyle, K. Zollinger, and O. Delemont, “Isotope ratio mass spectrometry as a tool for source inference in forensic science: a critical review,” Forensic Sci. Int. 251, 139–158 (2015).

    Article  Google Scholar 

  20. M. C. Liang, S. Mahata, A. H. Laskar, and S. K. Bhattacharya, “Spatiotemporal variability of oxygen isotope anomaly in near surface air CO2 over urban, semi-urban and ocean areas in and around Taiwan,” Aerosol Air Qual. Res. 17 (3), 706–720 (2016).

    Article  Google Scholar 

  21. E. Lichtfouse, S. Dou, C. Girardin, M. Grably, J. Balesdent, F. Béhar, and M. Vandenbroucke, “Unexpected 13C-enrichment of organic components from wheat crop soils: evidence for the in situ origin of soil organic matter,” Org. Geochem. 23 (9), 865–868 (1995).

    Article  Google Scholar 

  22. E. Lichtfouse, M. Lichtfouse, and A. Jaffrezic, “δ13C values of grasses as a novel indicator of pollution by fossil-fuel-derived greenhouse gas CO2 in urban areas,” Environ. Sci. Technol. 37, 87–89 (2003).

    Article  Google Scholar 

  23. K. J. Natelhoffer and B. Fry, “Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter,” Soil Sci. Soc. Am. J. 52 (6), 1633–1640 (1988).

    Article  Google Scholar 

  24. D. E. Pataki, J. T. Randerson, W. Wang, M. Herzenach, and N. E. Grulke, “The carbon isotope composition of plants and soils as biomarkers of pollution,” in Isoscapes: Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping, Springer-Verlag, New York, NY, 2010), chap. 19, pp. 407–423.

    Google Scholar 

  25. Z. Rao, W. Guo, J. Cao, F. Shi, H. Jiang, and C. Li, “Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: a global review,” Earth-Sci. Rev. 165, 110–119 (2017).

    Article  Google Scholar 

  26. B. N. Smith and S. Epstein, “Two categories of 13C/12C ratios for higher plants,” Plant Physiol. 47 (3), 380–384 (1971).

    Article  Google Scholar 

  27. Y. Wang, J. Liang, J. Wang, and S. Gao, “Combining stable carbon isotope analysis and petroleum-fingerprinting to evaluate petroleum contamination in the Yanchang oilfield located on loess plateau in China,” Environ. Sci. Pollut. Res. 25 (3), 2830–2841 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to N.I. Khlynina and E.V. Terskaya, Chair of Landscape Geochemistry and Soil Geography, Faculty of Geography, Lomonosov Moscow State University, for their assistance in laboratory assays and field activities.

Funding

The work was supported by the Russian Science Foundation (grants no. 19-17-00126 for analysis of stable isotopes, no. 14-17-00193 for field activities, and no. 19-77-30004 for analysis of lipids) and Russian Foundation for Basic Research (grant no. 18-05-60272 for data generalization).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Belik.

Ethics declarations

The authors state no conflict of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belik, A.D., Vasil’chuk, Y.K., Gennadiev, A.N. et al. The Isotopic Composition of Carbon in Soil Lipids in the Oil and Gas Development Area in Volgograd Oblast, Russia. Eurasian Soil Sc. 53, 1735–1742 (2020). https://doi.org/10.1134/S1064229320120030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320120030

Keywords:

Navigation