Skip to main content
Log in

Carbon Isotope Signatures and Polyarenes in the Pedogenic Material of Ice Wedges of the Batagay Yedoma (Yakutia)

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The carbon isotope signatures and the content of polycyclic aromatic hydrocarbons (PAHs) in the pedogenic material of inclusions in ice wedges of the Batagay yedoma (Yakutia) are studied. The mean concentration of 11 PAHs is 170 ppb (minimum, 7 ppb and maximum, 430 ppb) and the mean δ13С value in soil lipids is –29‰ (minimum, –31.1‰ and maximum, –26.2‰). The prevalent polyarenes in associations are naphthalene homologs and phenanthrene. Trace amounts of heavy PAHs, including benzo[a]pyrene (an indicator of pyrogenic processes), are also detectable. The PAH contents and δ13С values in ice wedges show the trend of a decrease with depth. The δ13С values and PAH content suggest a pedogenic origin of the deposit: therefore, PAHs originate from plant residues and wildfires. The observed trend of changes in the concentrations of polyarenes along the ice wedge may be associated with the changes in landscapes in the Late Pleistocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. N. Gabov, V. A. Beznosikov, and B. M. Kondratenok, “Polycyclic aromatic hydrocarbons in background podzolic and gleyic peat-podzolic soils,” Eurasian Soil Sci. 40, 256–264 (2007).

    Article  Google Scholar 

  2. D. N. Gabov, V. A. Beznosikov, and E. V. Yakovleva, “Accumulation of polycyclic aromatic hydrocarbons in hummocky tundra peatlands under climate change at high latitudes,” Geochem. Int. 55, 737–751 (2017).

    Article  Google Scholar 

  3. D. N. Gabov, R. S. Vasilevich, E. V. Yakovleva, and O. M. Zueva, “Aromatic compounds in hummocky peatlands of the permafrost area,” Geoekol., Inzh. Geol., Gidrogeol., Geokriol., No. 6, 15–29 (2017).

  4. D. N. Gabov, E. V. Yakovleva, R. S. Vasilevich, O. L. Kuznetsov, and V. A. Beznosikov, “Polycyclic aromatic hydrocarbons in peat mounds of the permafrost zone,” Eurasian Soil Sci. 52, 1038–1050 (2019). https://doi.org/10.1134/S1064229319090035

    Article  Google Scholar 

  5. D. N. Gabov, E. V. Yakovleva, and O. M. Zueva, “Water-soluble phenol in tuberous peatlands of the forest-tundra zone,” in Proceedings of XIV All-Russian Scientific-Practical Conference with International Participation “Biodiagnostics of Natural and Natural-Technogenic Systems” (Raduga-Press, Kirov, 2016), pp. 326–330.

  6. E. M. Galimov, Geochemistry of Stable Carbon Isotopes (Nedra, Moscow, 1968) [in Russian].

    Google Scholar 

  7. A. N. Gennadiev, Yu. I. Pikovskii, V. N. Florovskaya, T. A. Alekseeva, I. S. Kozin, A. I. Ogloblina, M. E. Ramneskaya, et al., Geochemistry of Polycyclic Aromatic Hydrocarbons in Rocks and Soils (Moscow State Univ., Moscow, 1996) [in Russian].

    Google Scholar 

  8. A. N. Gennadiev, Yu. I. Pikovskii, A. S. Tsibart, and M. A. Smirnova, “Hydrocarbons in soils: origin, composition, and behavior (review),” Eurasian Soil Sci. 48, 1076–1089 (2015).

    Article  Google Scholar 

  9. Yu. I. Korchagina and O. P. Chetverikova, Manual for the Analysis of Suspended Organic Matter in Sedimentary Rocks (Nedra, Moscow, 1976) [in Russian].

    Google Scholar 

  10. A. V. Pastukhov, D. A. Kaverin, and D. N. Gabov, “Polycyclic aromatic hydrocarbons in cryogenic peat plateaus of northeastern Europe,” Eurasian Soil Sci. 50, 805–813 (2017).

    Article  Google Scholar 

  11. Yu. I. Pikovskii, L. A. Korotkov, M. A. Smirnova, and R. G. Kovach, “Laboratory analytical methods for the determination of the hydrocarbon status of soils (a review),” Eurasian Soil Sci. 50, 1125–1137 (2017).

    Article  Google Scholar 

  12. Yu. I. Pikovskii, M. A. Smirnova, A. N. Gennadiev, Yu. A. Zavgorodnyaya, A. P. Zhidkin, R. G. Kovach, and T. S. Koshovskii, “Parameters of the native hydrocarbon status of soils in different bioclimatic zones,” Eurasian Soil Sci. 52, 1333–1346 (2019). https://doi.org/10.1134/S1064229319110085

    Article  Google Scholar 

  13. F. Ya. Rovinskii, T. A. Teplitskaya, and T. A. Alekseeva, Background Monitoring of Polycyclic Aromatic Hydrocarbons (Gidrometeoizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  14. A. P. Khaustov and M. M. Redina, “Polycyclic aromatic hydrocarbons as geochemical markers of petroleum pollution of the environment,” Ekspoz. Neft’ Gaz., No. 4 (36), 92–96 (2014).

  15. A. P. Khaustov and M. M. Redina, “Geochemical markers based on concentration ratios of PAH in oils and oil-polluted areas,” Geochem. Int. 55, 98–107 (2017).

    Article  Google Scholar 

  16. A. S. Tsibart and A. N. Gennadiev, “Associations of polycyclic aromatic hydrocarbons in post-fire soils,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 3, 13–19 (2011).

  17. E. V. Abakumov, V. M. Tomashunas, E. D. Lodygin, D. N. Gabov, V. T. Sokolov, V. A. Krylenkov, and I. Y. Kirtsideli, “Polycyclic aromatic hydrocarbons in insular and coastal soils of the Russian Arctic,” Eurasian Soil Sci. 48 (12), 1300–1305 (2015).

    Article  Google Scholar 

  18. A. Armstroff, H. Wilkes, J. Schwarzbauer, R. Littke, and B. Horsfield, “Aromatic hydrocarbon biomarkers in terrestrial organic matter of Devonian to Permian age,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 240 (1–2), 253–274 (2006).

    Article  Google Scholar 

  19. K. Ashastina, L. Schirrmeister, M. Fuchs, and F. Kienast, “Palaeoclimate characteristics in interior Siberia of MIS 6-2: first insights from the Batagay permafrost mega-thaw slump in the Yana Highlands,” Clim. Past. 13, 795–818 (2017).

    Article  Google Scholar 

  20. K. Ashastina, PhD Thesis (Friedrich-Schiller-Universität, Jena, 2018). https://www.db-thueringen.de/receive/ dbt_mods_00038013.

  21. J. E. Balmer, H. Hung, Y. Yu, R. J. Letcher, and D. C. Muir, “Sources and environmental fate of pyrogenic polycyclic aromatic hydrocarbons (PAHs) in the Arctic,” Emerging Contam. 5, 128–142 (2019).

    Article  Google Scholar 

  22. C. Bosch, A. Andersson, M. Kruså, C. Bandh, I. Hovorková, J. Klánová, T. Knowles, R. D. Pancost, R. P. Evershed, and Ö. Gustafsson, “Source apportionment of polycyclic aromatic hydrocarbons in central European soils with compound-specific triple isotopes (δ13C, Δ14C, and δ2H),” Environ. Sci. Technol. 49 (13), 7657–7665 (2015).

    Article  Google Scholar 

  23. S. Dahle, V. M. Savinov, G. G. Matishov, A. Evenset, and K. Næs, “Polycyclic aromatic hydrocarbons (PAHs) in bottom sediments of the Kara Sea shelf, Gulf of Ob and Yenisei Bay,” Sci. Total Environ. 306 (1–3), 57–71 (2003).

    Article  Google Scholar 

  24. M. Elmquist, I. Semiletov, L. Guo, and Ö. Gustafsson, “Pan-Arctic patterns in black carbon sources and fluvial discharges deduced from radiocarbon and PAH source apportionment markers in estuarine surface sediments,” Global Biogeochem. Cycles 22, GB2018 (2008). https://doi.org/10.1029/2007GB002994

    Article  Google Scholar 

  25. B. Glaser, A. Dreyer, M. Bock, S. Fiedler, M. Mehring, and T. Heitmann, “Source apportionment of organic pollutants of a highway-traffic-influenced urban area in Bayreuth (Germany) using biomarker and stable carbon isotope signatures,” Environ. Sci. Technol. 39 (11), 3911–3917 (2005).

    Article  Google Scholar 

  26. L. Guo, I. Semiletov, Ö. Gustafsson, J. Ingri, P. Andersson, O. Dudarev, and D. White, “Characterization of Siberian Arctic estuarine sediments: implications for terrestrial organic carbon export,” Global Biogeochem. Cycles 18 (1), GB1036 (2004). https://doi.org/10.1029/2003GB002087

    Article  Google Scholar 

  27. D. Hunkeler and R. Aravena, “Determination of compound-specific carbon isotope ratios of chlorinated methanes, ethanes, and ethenes in aqueous samples,” Environ. Sci. Technol. 34 (13), 2839–2844 (2000).

    Article  Google Scholar 

  28. O. Idowu, K. T. Semple, K. Ramadass, W. O’Connor, P. Hansbro, and P. Thavamani, “Beyond the obvious: environmental health implications of polar polycyclic aromatic hydrocarbons,” Environ. Int. 123, 543–557 (2019).

    Article  Google Scholar 

  29. J. Jautzy, J. M. Ahad, C. Gobeil, and M. M. Savard, “Century-long source apportionment of PAHs in Athabasca oil sands region lakes using diagnostic ratios and compound-specific carbon isotope signatures,” Environ. Sci. Technol. 47 (12), 6155–6163 (2013).

    Article  Google Scholar 

  30. J. Kochany, “PAHs in natural waters: natural and anthropogenic sources, and environmental behavior,” in Wastewater Treatment (CRC Press, Boca Raton, FL, 2018), pp. 26–61.

    Google Scholar 

  31. B. Kumar, V. K. Verma, C. S. Sharma, and A. B. Akolkar, “Priority polycyclic aromatic hydrocarbons (PAHs): distribution, possible sources and toxicity equivalency in urban drains,” Polycyclic Aromat. Compd. 36 (4), 342–363 (2016).

    Article  Google Scholar 

  32. E. Lichtfouse, S. Dou, C. Girardin, M. Grably, J. Balesdent, F. Béhar, and M. Vandenbroucke, “Unexpected 13C-enrichment of organic components from wheat crop soils: evidence for the in situ origin of soil organic matter,” Org. Geochem. 23 (9), 865–868 (1995).

    Article  Google Scholar 

  33. É. Lichtfouse, H. Budzinski, P. Garrigues, and T. I. Eglinton, “Ancient polycyclic aromatic hydrocarbons in modern soils: 13C, 14C and biomarker evidence,” Org. Geochem. 26 (5–6), 353–359 (1997).

    Article  Google Scholar 

  34. S. Liebner, J. Zeyer, D. Wagner, C. Schubert, E. M. Pfeiffer, and C. Knoblauch, “Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra,” J. Ecol. 99 (4), 914–922 (2011).

    Google Scholar 

  35. M. Lu, Y. Lu, T. Ikejiri, N. Hogancamp, Y. Sun, Q. Wu, R. Carroll, et al., “Geochemical evidence of First Forestation in the southernmost Euramerica from Upper Devonian (Famennian) Black shales,” Sci. Rep. 9 (1), 7581 (2019).

    Article  Google Scholar 

  36. C. McRae, C. E. Snape, C. G. Sun, D. Fabbri, D. Tartari, C. Trombini, and A. E. Fallick, “Use of compound-specific stable isotope analysis to source anthropogenic natural gas-derived polycyclic aromatic hydrocarbons in a lagoon sediment,” Environ. Sci. Technol. 34 (22), 4684–4686 (2000).

    Article  Google Scholar 

  37. R. U. Meckenstock, B. Morasch, C. Griebler, and H. H. Richnow, “Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers,” J. Contam. Hydrol. 75 (3–4), 215–255 (2004).

    Article  Google Scholar 

  38. S. Müller, P. E. Tarasov, A. A. Andreev, T. Tütken, S. Gartz, and B. Diekmann, “Late Quaternary vegetation and environments in the Verkhoyansk Mountains region (NE Asia) reconstructed from a 50-kyr fossil pollen record from Lake Billyakh,” Quat. Sci. Rev. 29 (17–18), 2071–2086 (2010).

    Article  Google Scholar 

  39. J. B. Murton, M. E. Edwards, A. V. Lozhkin, P. M. Anderson, G. Savvinov, N. Bakulina, O. Bondarenko, et al., “Preliminary paleoenvironmental analysis of permafrost deposits at Batagaika megaslump, Yana Uplands, northeast Siberia,” Quat. Res. 87, 314–330 (2017).

    Article  Google Scholar 

  40. T. Opel, Ju. B. Murton, S. Wetterich, et al., “Past climate and continentality inferred from ice wedges at Batagay megaslump in the Northern Hemisphere’s most continental region, Yana Highlands, interior Ya-kutia,” Clim. Past. 15, 1443–1461 (2019). https://doi.org/10.5194/cp-15-1443-2019

    Article  Google Scholar 

  41. R. P. Philip, “The emergence of stable isotopes in environmental and forensic geochemistry studies: a review,” Environ. Chem. Lett. 5 (2), 57–66 (2007).

    Article  Google Scholar 

  42. A. S. Ratnayake, “Paleoenvironmental reconstructions using organic source indicators: a summary of examples from Sri Lanka,” J. Trop. For. Environ. 8 (2), 1–12 (2018). https://doi.org/10.31357/jtfe.v8i2.3759.g2983

    Article  Google Scholar 

  43. L. Sánchez-García, J. E. Vonk, A. N. Charkin, D. Kosmach, O. V. Dudarev, I. P. Semiletov, and Ö. Gustafsson, “Characterization of three regimes of collapsing Arctic ice complex deposits on the SE Laptev Sea coast using biomarkers and dual carbon isotopes,” Permafrost Periglacial Process. 25 (3), 172–183 (2014).

    Article  Google Scholar 

  44. L. Schirrmeister, G. Schwamborn, P. P. Overduin, J. Strauss, M. C. Fuchs, M. Grigoriev, I. Yakshina, et al., “Yedoma ice complex of the Buor-Khaya Peninsula (southern Laptev Sea),” Biogeosciences 14 (5), 1261–1283 (2017).

    Article  Google Scholar 

  45. G. F. Slater, H. S. Dempster, B. Sherwood Lollar, and J. Ahad, “Headspace analysis: a new application for isotopic characterization of dissolved organic contaminants,” Environ. Sci. Technol. 33 (1), 190–194 (1999).

    Article  Google Scholar 

  46. G. F. Slater, J. M. E. Ahad, B. Sherwood Lollar, R. Allen-King, and B. Sleep, “Carbon isotope effects resulting from equilibrium sorption of dissolved VOCs,” Anal. Chem. 72 (22), 5669–5672 (2000).

    Article  Google Scholar 

  47. E. Stogiannidis and R. Laane, “Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities,” in Reviews of Environmental Contamination and Toxicology (Springer-Verlag, New York, 2015), pp. 49–133.

    Google Scholar 

  48. Y. L. Tan, A. Kong, and M. A. Monetti, “Biogenic polycyclic aromatic hydrocarbons in an Alaskan arctic lake sediment,” Polycyclic Aromat. Compd. 9 (1–4), 185–192 (1996).

    Article  Google Scholar 

  49. Yu. K. Vasil’chuk, J. Yu. Vasil’chuk, N. A. Budantseva, A. C. Vasil’chuk, and A. Yu. Trishin, “High-resolution oxygen isotope and deuterium diagrams for ice wedges of the Batagai yedoma, Northern Central Yakutia,” Dokl. Earth Sci. 487, 975–978 (2019). https://doi.org/10.1134/S1028334X19080312

    Article  Google Scholar 

  50. J. E. Vonk, L. Sánchez-García, I. P. Semiletov, O. . Dudarev, T. I. Eglinton, A. Andersson, and Ö. Gustafsson, “Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea,” Biogeosciences 7 (10), 3153–3166 (2010).

    Article  Google Scholar 

  51. S. G. Wakeham and E. A. Canuel, “Biogenic polycyclic aromatic hydrocarbons in sediments of the San Joaquin River in California (USA), and current paradigms on their formation,” Environ. Sci. Pollut. Res. 23 (11), 10426–10442 (2016).

    Article  Google Scholar 

  52. W. Wilcke, M. Krauss, and W. Amelung, “Carbon isotope signature of polycyclic aromatic hydrocarbons (PAHs): evidence for different sources in tropical and temperate environments?” Environ. Sci. Technol. 36 (16), 3530–3535 (2002).

    Article  Google Scholar 

  53. M. B. Yunker and R. W. Macdonald, “Alkane and PAH depositional history, sources and fluxes in sediments from the Fraser River Basin and Strait of Georgia, Canada,” Org. Geochem. 34 (10), 1429–1454 (2003).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank N.I. Khlynina, E.V. Terskaya, and A.Yu. Trishin (Department of Landscape Geochemistry and Soil Geography, Faculty of Geography, Lomonosov Moscow State University) for their assistance in laboratory and field work.

Funding

The work was supported by the Russian Science Foundation (project no. 19-17-00126 on analysis of stable isotopes and project no. 19-77-30004 on PAH analysis) and the Russian Foundation for Basic Research (project no. 18-05-60272 Arctica on data generalization).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Vasil’chuk.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’chuk, Y.K., Belik, A.D., Budantseva, N.A. et al. Carbon Isotope Signatures and Polyarenes in the Pedogenic Material of Ice Wedges of the Batagay Yedoma (Yakutia). Eurasian Soil Sc. 53, 187–196 (2020). https://doi.org/10.1134/S1064229320020143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320020143

Keywords:

Navigation