Skip to main content
Log in

The influence of cryogenic mass exchange on the distribution of viable microfauna in cryozems

  • Soil Biology
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The role of cryogenic mass exchange in the distribution of the viable microfauna (ciliates, heterotrophic flagellates, and nematodes) in the profiles of cryoturbated cryogenic soils and in the upper layers of permafrost was revealed. The material for microbiological investigations was collected from the main horizons of cryozem profiles, including the zones with morphologically manifested processes of cryogenic mass exchange (the development of barren spots, cryoturbation, and suprapermafrost accumulation) and the zones affected by solifluction. The radiocarbon dating of the soil samples showed that the age of the organic cryogenic material and material buried in the course of solifluction varied from 2100 to 4500 years. Some zones with specific ecological conditions promoting the preservation of species diversity of the microfauna were found to develop in the cryozem profiles. A considerable part of the community (38% of ciliates, 58% of flagellates, and 50% of nematodes) maintained its viability in the dormant state, and in some cases, it could pass to the state of long-term cryobiosis in the upper layer of permafrost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. G. Gel’tser, Protozoa Species as a Component of Soil Biota: Systematics and Ecology (Moscow State Univ., Moscow, 1993) [in Russian].

    Google Scholar 

  2. S. V. Gubin and A. A. Veremeeva, “Parent materials enriched in organic matter in the northeast of Russia,” Eurasian Soil Sci. 43 (11), 1238–1243 2010.

    Article  Google Scholar 

  3. B. F. Zhukov, Atlas of Freshwater Heterotrophic Flagellates: Biology, Ecology, and Systematics (Institute of Inland Waters, Russian Academy of Sciences, Rybinsk, 1993) [in Russian].

    Google Scholar 

  4. N. A. Karavaeva, Tundra Soils of Northern Yakutia (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  5. G. A. Kochkina, N. E. Ivanushkina, and S. M. Ozerskaya, “Structure of microbiota in permafrost regions,” Mikol. Segodnya 2, 178–184 2011.

    Google Scholar 

  6. A. V. Lupachev and S. V. Gubin, “Suprapermafrost organic-accumulative horizons in the tundra cryozems of northern Yakutia,” Eurasian Soil Sci. 45 (1), 45–55 2012.

    Article  Google Scholar 

  7. S. M. Ozerskaya, G. A. Kochkina, N. E. Ivanushkina, E. V. Knyazeva, and D. A. Gilichinskii, The structure of micromycete complexes in permafrost and cryopegs of the Arctic, Microbiology (Moscow) 77 (4), 482–489 2008.

    Article  Google Scholar 

  8. A. V. Shatilovich, A. P. Myl’nikov, and D. V. Stupin, “Fauna and morphology of heterotrophic Mastigophora and Heliozoain Late Pleistocene fossil holes of ground squirrels (Kolyma Lowland),” Zool. Zh. 89 (4), 1–11 2010.

    Google Scholar 

  9. A. V. Shatilovich, L. A. Shmakova, S. V. Gubin, A. V. Gudkov, and D. A. Gilichinsky, “Viable protozoa in late Pleistocene and Holocene permafrost sediments,” Dokl. Biol. Sci. 401 (1–6), 136–138 2005.

    Article  Google Scholar 

  10. L. A. Shmakova, E. V. Spirina, A. V. Shatilovich, D. G. Fedorov-Davydov, D. V. Tikhonenkov, S. V. Goryachkin, and D. A. Gilichinsky, “Microbial communities and fauna of protists in permafrost soils,” in Terrestrial and Marine Ecosystems (Paulsen, Moscow, 2011), pp. 428–443.

    Google Scholar 

  11. Yu. L. Shur, Upper Horizon of the Massif of Permafrost Minerals and Thermokarst (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  12. S. M. Adl, A. G. B. Simpson, M. A. Farmer, et al., “The new higher level classification of eukaryotes with emphasis on the taxonomy of protists,” J. Eukaryotic Microbiol. 52, 399–432 2005.

    Article  Google Scholar 

  13. M. S. Adl and V. V. S. R. Gupta, “Protists in soil ecology and forest nutrient cycling,” Can. J. For. Res. 36, 1805–1817 2006.

    Article  Google Scholar 

  14. I. Andrássy, “Nematodes in the sixth continent,” J. Nematode Morphol. Syst. 1, 107–186 1998.

    Google Scholar 

  15. H. Arndt, D. Dietrich, B. Auer, E.-J. Cleven, T. Gräfenhan, M. Weitere, and A. P. Mylnikov, “Functional diversity of heterotrophic flagellates in aquatic ecosystems,” in The Flagellates (Taylor and Francis, London, 2000), pp. 240–268.

    Google Scholar 

  16. A. A. Bobrov, S. Wetterich, F. Beermann, A. Schneider, L. Kokhanova, L. Schirrmeister, L. A. Pestryakova, and U. Herzschuh, “Testate amoebae and environmental features of polygon tundra in the Indigirka lowland (East Siberia),” Polar Biol. 36 (6), 857–870 2013. doi 10.1007/s00300-013-1311-y

    Article  Google Scholar 

  17. P. De Ley and M. L. Blaxter, Systematic Position and Phylogeny. The Biology of Nematodes (Taylor and Francis, London, 2002), pp. 1–30.

    Book  Google Scholar 

  18. J. Eo, T. N. Nakamoto, K. Otobe, and T. M. Mizukubo, “The role of pore size on the migration of Meloidogyne incognita juveniles under different tillage systems,” Nematology 9 (6), 751–758 2007.

    Article  Google Scholar 

  19. T. Fenchel, The Ecology of Protozoa (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  20. W. Foissner, Colpodea (Ciliophora) (Fischer-Verlag, Stuttgart, 1993) p.

    Google Scholar 

  21. W. Foissner, “Diversity and ecology of soil flagellates,” in The Biology of the Free-Living Heterotrophic Flagellates (Claredon, Oxford, 1991), pp. 93–112.

    Google Scholar 

  22. W. Foissner, “Faunistics, taxonomy and ecology of moss and soil ciliates (Protozoa, Ciliophora) from Antarctica, with description of new species, including Pleuroplitoides smithi gen.n., sp.n.,” Acta Protozool. 35, 95–123 1996.

    Google Scholar 

  23. W. Foissner, “Soil protozoa: fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators and guide to the literature,” in Progress in Protistology (Biopress, Bristol, 1987), Vol. 2, pp. 69–212.

    Google Scholar 

  24. D. A. Gichinsky and E. M. Rivkina, “Permafrost microbiology,” in Encyclopedia of Geobiology (Springer-Verlag, Berlin, 2011), pp. 726–732.

    Chapter  Google Scholar 

  25. D. Gilichinsky, S. Wagener, and T. Vishnivetskaya, “Permafrost microbiology,” Permafrost Periglacial Process. 6, 281–291 1995.

    Article  Google Scholar 

  26. O. Hammer, D. A. T. Harper, and P. D. Ryan, “PAST: Palaeontological Statistics software package for education and data analysis,” Palaeontol. Electron. 4 (1), art. 4 (2001).

    Google Scholar 

  27. O. Holovachov, “Nematodes from terrestrial and freshwater habitats in the Arctic,” Biodiversity Data J. 2 (2), e1165 (2014). 11 doi 10.3897/BDJ.1162.e1165

    Article  Google Scholar 

  28. A. T. Howe, D. Bass, K. Vickerman, E. E. Chao, and T. Cavalier-Smith, “Phylogeny, taxonomy, and astounding genetic diversity of Glissomonadida ord. nov., the dominant gliding zooflagellates in soil (Protozoa: Cercozoa),” Protistology 160 (2), 159–189 2009. doi 10.1016/j.protis.2008.11.007

    Article  Google Scholar 

  29. W. Je Lee and D. J. Patterson, “Diversity and geographic distribution of free-living heterotrophic flagellates—analysis by PRIMER,” Protist 149, 229–244 1998. doi 10.1016/S1434-4610(98)70031-8

    Article  Google Scholar 

  30. C. Kaiser, H. Meyer, C. Biasi, O. Rusalimova, P. Barsukov, and A. Richter, “Conservation of soil organic matter through cryoturbation in arctic soils in Siberia,” J. Geophys. Res. 112, G02017 (2007). doi 10.1029/2006JG000258

    Article  Google Scholar 

  31. J. R. Mackay, “The origin of hummocks, western Arctic coast, Canada,” Can. J. Earth Sci. 17, 996–1006 1980.

    Article  Google Scholar 

  32. L. M. McGill, A. J. Shannon, D. Pisani, M.-A. Félix, H. Ramløv, I. Dix, D. A. Wharton, and A. M. Burnell, “Anhydrobiosis and freezing-tolerance: adaptations that facilitate the establishment of Panagrolaimus nematodes in polar habitats,” PLoS One 10 (3), e0116084 (2015). doi 10.1371/journal.pone.0116084

    Article  Google Scholar 

  33. C. Mulder, J. Helder, M. T. Vervoort, and J. Arie Vonk. “Trait-mediated diversification in nematode predatorprey systems,” Ecol. Evol. 1 (3), 386–391 2011. doi 10.1002/ece3.36

    Article  Google Scholar 

  34. H. Müller, U. E. M. Achilles-Day, and J. G. Day, “Tolerance of the resting cysts of Colpoda inflata (Ciliophora, Colpodea) and Meseres corlissi (Ciliophora, Spirotrichea) to desiccation and freezing,” Eur. J. Protistol. 46, 133–142 2010.

    Article  Google Scholar 

  35. F. C. Page, A New Key to Fresh Water and Soil Gymnamoebae (Fresh Water Biological Association, Cumbria, 1988).

    Google Scholar 

  36. R. N. Perry, D. J. Wright, and D. J. Chitwood, Reproduction, Physiology, and Biochemistry. Plant Nematology (CABI, Boston, 2013), pp. 219–245.

    Book  Google Scholar 

  37. W. Petz, “Ecology of the active soil microfauna (Protozoa, Metazoa) of Wilkes Land, East Antarctica,” Polar Biol. 18, 33–44 1997.

    Article  Google Scholar 

  38. W. Petz, A. Valbonesi, and A. Quesada, “Ciliate biodiversity in freshwater environments of maritime and continental Antarctic,” Terra Antarct. Rep., No. 11, 43–50 2005.

    Google Scholar 

  39. C. L. Ping, G. J. Michaelson, J. M. Kimble, V. E. Romanovsky, Y. L. Shur, D. K. Swanson, and D. A. Walker, “Cryogenesis and soil formation along a bioclimate gradient in Arctic North America,” J. Geophys. Res. 113, G03S12 (2008). doi 10.1029/2008JG000744

  40. A. Y. Ryss, “Express technique to prepare collection slides of nematodes,” Zoosyst. Ross. 11, 257–260 2003.

    Google Scholar 

  41. A. Y. Ryss, S. Boström, and B. Sohlenius, “Tylenchid nematodes found on the Noatak Basin, East Antarctica,” Ann. Zool. (Warszawa) 55 (3), 45–56 2005.

    Google Scholar 

  42. A. Shatilovich, D. Stoupin, and E. Rivkina, “Ciliates from ancient permafrost: assessment of cold resistance of the resting cysts,” Eur. J. Protistol. 51, 230–240 2015.

    Article  Google Scholar 

  43. H. G. Smith, “The distribution and ecology of terrestrial protozoa of sub-Antarctic and marine Antarctic islands,” Br. Antarct. Surv. Sci. Rep. 95, 1–104 1978.

    Google Scholar 

  44. C. A. S. Smith, D. K. Swanson, J. P. Moore, R. J. Ahrens, J. G. Bockheim, J. M. Kimble, G. G. Mazhitova, C. L. Ping, and C. Tarnocai, “A description and classification of soils and landscapes of the lower Kolyma River, Northeastern Russia,” Polar Geogr. Geol. 19 (2), 107–126 1995.

    Article  Google Scholar 

  45. D. Stoupin, A. K. Kiss, H. Arndt, A. Shatilovich, D. Gilichinsky, and F. Nitsche, “Cryptic diversity within the choanoflagellate morphospecies complex Codosiga botrytis—phylogeny and morphology of ancient and modern isolates,” Eur. J. Protistol. 48, 263–273 2012.

    Article  Google Scholar 

  46. A. M. Treonis and D. H. Wall, “Soil Nematodes and desiccation survival in the extreme arid environment of the Antarctic dry valleys,” Integr. Comp. Biol. 45, 741–750 2005.

    Article  Google Scholar 

  47. A. Troitsky, S. Gubin, V. Bobrova, M. Ignatov, M. Krasnikova, and D. Gilichinsky, “Regeneration of three moss species from 32 000-y-old buried soil in Siberian permafrost,” 3rd International Symposium on Molecular Systematics of Bryophytes, Abstracts of Papers (New York Botanical Garden, Bronx, 2012), p. 58.

    Google Scholar 

  48. T. A. Vishnivetskaya, E. V. Spirina, A. V. Shatilovich, L. G. Erokhina, E. A. Vorobyova, and D. A. Gilichinsky, “The resistance of viable permafrost algae to simulated environmental stresses: implications for astrobiology,” Int. J. Astrobiol. 2 (3), 171–177 2003. doi 10.1017/S1473550403001575

    Article  Google Scholar 

  49. S. Yashina, S. Gubin, S. Maksimovich, et al., “Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost,” Proc. Natl. Acad. Sci. U.S.A. 109 (10), 4008–4013 2012. doi 10.1073/pnas.1118386109

    Article  Google Scholar 

  50. G. W. Yeates, T. Bongers, R. G. de Goede, D. W. Freckman, and S. Georgieva, “Feeding habits in soil nematode families and genera—an outline for soil ecologists,” J. Nematol. 25, 315–331 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gubin.

Additional information

Original Russian Text © S.V. Gubin, A.V. Lupachev, A.V. Shatilovich, A.P. Myl’nikov, A.Yu. Ryss, A.A. Veremeeva, 2016, published in Pochvovedenie, 2016, No. 12, pp. 1485–1499.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubin, S.V., Lupachev, A.V., Shatilovich, A.V. et al. The influence of cryogenic mass exchange on the distribution of viable microfauna in cryozems. Eurasian Soil Sc. 49, 1400–1413 (2016). https://doi.org/10.1134/S1064229316120073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229316120073

Keywords

Navigation