Skip to main content
Log in

Hydrocarbons in soils: Origin, composition, and behavior (Review)

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

It has been shown that a large body of evidence on the sources, transformation, and migration of hydrocarbons in soils has been acquired by different researchers. Available data about the origin and behavior of hydrocarbon gases, total petroleum hydrocarbons, polycyclic aromatic hydrocarbons, alkanes, and other compounds have been considered successively. A wide range of natural and anthropogenic factors affecting the transformation and migration of hydrocarbons in soils have been analyzed. The indicative value of these compounds has been explained. At the same time, many problems related to hydrocarbons in soils are still insufficiently understood. Sparse and fragmentary data are available in the literature on the interaction of different hydrocarbon groups in the soil. Few data refer to the features of hydrocarbons in background zonal soils; there are almost no interzonal comparisons. The behavior of hydrocarbons in soils of different landscape-geographical positions is characterized in isolated publications. The hydrocarbon status of soils as an integral complex of interrelated hydrocarbons is almost not analyzed. Hydrocarbons of a single class (polycyclic aromatic hydrocarbons, hydrocarbon gases, n-alkanes, etc.) are usually characterized in each publication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. Bragina, A. S. Tsibart, M. P. Zavadskaya, and A. V. Sharapova, “Soils on overburden dumps in the forest-steppe and mountain taiga zones of the Kuzbass”, Eurasian Soil Sci. 47 (7), 723–733 (2014). doi 10.7868/S0032180X14050037

    Article  Google Scholar 

  2. D. N. Gabov and V. A. Beznosikov, “Polycyclic aromatic hydrocarbons in tundra soils of the Komi Republic”, Eurasian Soil Sci. 47 (1), 18–25 (2014). doi 10.7868/S0032180X14020051

    Article  Google Scholar 

  3. D. N. Gabov, V. A. Beznosikov, B. M. Kondratenok, and I. V. Gruzdev, “Saturated hydrocarbons in the background and contaminated soils of the Cis-Urals”, Eurasian Soil Sci. 43 (10), 1102–1108 (2010).

    Article  Google Scholar 

  4. A. N. Gennadiev and A. S. Tsibart, “Pyrogenic polycyclic aromatic hydrocarbons in soils of reserved and anthropogenically modified areas: factors and features of accumulation”, Eurasian Soil Sci. 46 (1), 28–36 (2013). doi 10.7868/S0032180X13010024

    Article  Google Scholar 

  5. Geochemistry of Polycyclic Aromatic Hydrocarbons in Mountain Rocks and Soils, Ed. by A. N. Gennadiev and Yu. I. Pikovskii (Moscow State University, Moscow, 1996) [in Russian].

  6. A. R. Geptner, T. A. Alekseeva, and Yu. I. Pikovskii, “Polycyclic aromatic hydrocarbons in the cover deposits and Icelandic tephra: composition and specific distribution”, Litol. Polezn. Iskop., No. 2, 172–181 (2002).

    Google Scholar 

  7. Yu. A. Zavgorodnyaya, G. I. Kol’tsov, A. L. Chikidova, and V. V. Demin, “Assessment of hydrocarbon status of soils in city of Moscow”, in Proceedings of the IV International Conference “Modern Problems of Soil Pollution” (Moscow, 2013), Vol. 1, pp. 300–304.

    Google Scholar 

  8. Yu. A. Zavgorodnyaya and D. S. Sokolova, “Concentration of volatile hydrocarbons in oil-polluted landscapes of Western Siberia”, Georesur., Geonergetika, Geopolit., No. 1(3), (2011).

    Google Scholar 

  9. V. L. Kachinskii, Yu. A. Zavgorodnyaya, and A. N. Gennadiev, “Hydrocarbon contamination of arctic tundra soils of the Bol’shoi Lyakhovskii Island (the Novosibirskie Islands)”, Eurasian Soil Science. 47 (2), 57–69 (2014).

    Article  Google Scholar 

  10. A. A. Krasnopeeva, “Natural bituminoids in soils of the forest zone: luminescence diagnostics and content levels (Satino Research Station, Moscow State University)”, Eurasian Soil Sci. 41 (12), 1282–1293 (2008).

    Article  Google Scholar 

  11. O. V. Lisovitskaya and N. V. Mozharova, “The effect of hydrocarbon contamination on the accumulation of lipids in soils”, Eurasian Soil Sci. 46 (6), 714–719 (2013). doi 10.7868/S0032180X13060051

    Article  Google Scholar 

  12. V. V. Motorykina, D. S. Sokolova, Yu. A. Zavgorodnyaya, V. V. Demin, and S. Ya. Trofimov, “Influence of organic matter on the sorption of aromatic hydrocarbons by peat and chernozem”, Moscow Univ. Soil Sci. Bull. 63 (1), 12–16 (2008).

    Google Scholar 

  13. E. M. Nikiforova, I. S. Kozin, and K. Tsird, “Characteristics of pollution of urban soils by polycyclic aromatic hydrocarbons related to heating effect”, Pochvovedenie, No. 1, 91–102 (1993).

    Google Scholar 

  14. Yu. I. Pikovskii, A. N. Gennadiev, D. L. Golovanov, and G. N. Sakharov, “Cartographic assessment of potential of self-purification of soils from technogenic hydrocarbons in Russia”, in Geography and Environment (GEOS, Moscow, 2000), pp. 290–302.

    Google Scholar 

  15. Yu. I. Pikovskii, A. N. Gennadiev, A. A. Krasnopeeva, and T. A. Puzanova, “Natural and technogenic hydrocarbon geochemical fields in soils: concept, typology, and indication”, in Geochemistry of Landscapes and Soil Geography (APR, Moscow, 2012), pp. 236–258.

    Google Scholar 

  16. Yu. I. Pikovskii, M. A. Smirnova, R. G. Kovach, T. A. Puzanova, A. V. Khlynina, and N. I. Khlynina, “Behavior of hydrocarbons in karst landscapes”, Estestv. Tekh. Nauki, Nos. 9–10, 133–143 (2014).

    Google Scholar 

  17. Yu. I. Pikovskii, A. N. Gennadiev, T. A. Puzanova, A. A. Krasnopeeva, A. P. Zhidkin, and A. A. Oborin, “Hydrocarbon status of soils in an oil-producing region with karst relief”, Eurasian Soil Sci. 41 (11), 1162–1170 (2008).

    Article  Google Scholar 

  18. S. Ya. Trofimov, O. S. Uzkikh, E. S. Vasil’konov, and Yu. A. Zavgorodnyaya, “Behavior of n-alkanes from diesel fuel in urban soil”, in Proceedings of the II International Conference “Modern Problems of Soil Pollution” (Moscow, 2007), Vol. 2, pp. 327–330.

    Google Scholar 

  19. A. S. Tsibart and A. N. Gennadiev, “Polycyclic aromatic hydrocarbons in soils: Sources, behavior, and indication significance (a review)”, Eurasian Soil Sci. 46 (7), 728–741 (2013). doi 10.7868/S0032180X13070125

    Article  Google Scholar 

  20. S. S. Chernyanskii, T. A. Alekseeva, A. N. Gennadiev, and Yu. I. Pikovskii, “Organic profile of soddy-gley soil strongly polluted by polycyclic aromatic hydrocarbons”, Eurasian Soil Sci. 34 (11), 1170–1179 (2001).

    Google Scholar 

  21. C. Achten and T. Hofmann, “Native polycyclic aromatic hydrocarbons (PAH) in coals–a hardly recognized source of environmental contamination”, Sci. Total Environ. 407 (8), 2461–2473 (2009).

    Article  Google Scholar 

  22. A. A. Adeniyi and J. A. Afolabi, “Determination of total petroleum hydrocarbons and heavy metals in soils within the vicinity of facilities handling refined petroleum products in Lagos metropolis”, Environ. Int. 28 (1–2), 79–82 (2002).

    Article  Google Scholar 

  23. T. Agarwal, P. S. Khillare, V. Shridhar, and Sh. Ray, “Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India”, J. Hazard. Mater. 163 (2–3), 1033–1039 (2009).

    Article  Google Scholar 

  24. G. Andreou and S. Rapsomanikis, “Origins of nalkanes, carbonyl compounds and molecular biomarkers in atmospheric fine and coarse particles of Athens, Greece”, Sci. Total Environ. 407, 5750–5760 (2009).

    Article  Google Scholar 

  25. N. G. Andronova and I. L. Karol, “The contribution of USSR sources to global methane emission”, Chemosphere 26 (1–4), 111–126 (1993).

    Article  Google Scholar 

  26. S.-L. Badea, S. Lundstedt, P. Liljelind, and M. Tysklind, “The influence of soil composition on the leachability of selected hydrophobic organic compounds (HOCs) from soils using a batch leaching test”, J. Hazard. Mater. 254–255, 26–35 (2013).

    Article  Google Scholar 

  27. B. A. M. Bandowe, D. Rückamp, M. A. L. Bragança, V. Laabs, W. Amelung, Ch. Martius, and W. Wilcke, “Naphthalene production by microorganisms associated with termites: evidence from a microcosm experiment”, Soil Biol. Biochem. 41 (3), 630–639 (2009).

    Article  Google Scholar 

  28. D. L. Barnes and E. Chuvilin, “Migration of petroleum in permafrost-affected regions”, Soil Biol. 16, 263–278 (2009).

    Article  Google Scholar 

  29. C. Bayer, J. Gomes, F. C. B. Vieira, J. A. Zanatta, M. de Cássia Piccolo, and J. Dieckow, “Methane emission from soil under long-term no-till cropping systems”, Soil Tillage Res. 124, 1–7 (2012).

    Google Scholar 

  30. C. A. Belis, I. Offenthaler, and P. Weiss, “Semivolatiles in the forest environment: the case of PAHs”, Plant Ecophysiol. 8, 47–73 (2001).

    Article  Google Scholar 

  31. I. R. Bellobono, F. Morazzoni, R. Bianchi, E. S. Mangone, R. Stanescu, C. Costache, and P. M. Tozzi, “Laboratory-scale photomineralisation of n-alkanes in aqueous solutions, by photocatalytic membranes immobilizing titanium dioxide”, Int. J. Photoenergy 7, 79–85 (2005).

    Article  Google Scholar 

  32. I. R. Bellobono, R. Stanescu, C. Costache, C. Canevali, F. Morazzoni, R. Scotti, R. Bianchi, E. S. Mangone, G. de Martini, and P. M. Tozzi, “Laboratory-scale pho-tomineralization of n-alkanes in gaseous phase by photocatalytic membranes immobilizing titanium dioxide”, Int. J. Photoenergy 2006, 1–8 (2006).

    Google Scholar 

  33. M. Bezabih, W. F. Pellikaan, and W. H. Hendriks, “Using n-alkanes and their carbon isotope enrichments (δ13C) to estimate the botanical composition of pasture mixes from the Mid Rift Valley grasslands of Ethiopia”, Livest. Sci. 142 (1–3), 298–304 (2011).

    Article  Google Scholar 

  34. K. Bharati, S. R. Mohanty, V. R. Rao, and T. K. Adhya, “Influence of flooded and non-flooded conditions on methane efflux from two soils planted to rice”, Chemosphere: Global Change Sci. 3 (1), 25–32 (2001).

    Google Scholar 

  35. C. Biache, L. Mansuy-Huault, and P. Faure, “Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: Implications for the source identifications”, J. Hazard. Mater. 267, 31–39 (2014).

    Article  Google Scholar 

  36. S. Boitsov, V. Petrova, H. K. B. Jensen, A. Kursheva, I. Litvinenko, Y. Chen, and J. Klungsoyr, “Petroleumrelated hydrocarbons in deep and subsurface sediments from South-Western Barents Sea”, Mar. Environ. Res. 71 (5), 357–368 (2011).

    Article  Google Scholar 

  37. E. S. Boll, A. R. Johnsen, and J. H. Christensen, “Polar metabolites of polycyclic aromatic compounds from fungi are potential soil and groundwater contaminants”, Chemosphere 119, 250–257 (2015).

    Article  Google Scholar 

  38. N. Bortey-Sam, Y. Ikenaka, Sh. M. M. Nakayama, O. Akoto, Y. B. Yohannes, E. Baidoo, H. Mizukawa, and M. Ishizuka, “Occurrence, distribution, sources and toxic potential of polycyclic aromatic hydrocarbons (PAHs) in surface soils from the Kumasi Metropolis, Ghana”, Sci. Total Environ. 496, 471–478 (2014).

    Article  Google Scholar 

  39. D. C. Bouchard, S. C. Mravik, and G. B. Smith, “Benzene and naphthalene sorption on soil contaminated with residual hydrocarbons from unleaded gasoline”, Chemosphere 21 (8), 975–989 (1990).

    Article  Google Scholar 

  40. J. Bramley-Alves, J. Wasley, C. K. King, Sh. Powell, and Sh. A. Robinson, “Phytoremediation of hydrocarbon contaminants in subantarctic soils: an effective management option”, J. Environ. Manage. 142, 60–69 (2014).

    Article  Google Scholar 

  41. E. E. Bray and E. D. Evans, “Distribution of n-paraffins as a clue to recognition of source beds”, Geochim. Cosmochim. Acta 22 (1), 2–15 (1961).

    Article  Google Scholar 

  42. Q.-Y. Cai, C.-H. Mo, Y.-H. Li, Q.-Y. Zeng, A. Katsoyiannis, Q.-T. Wu, and J.-F. Férard, “Occurrence and assessment of polycyclic aromatic hydrocarbons in soils from vegetable fields of the Pearl River delta, South China”, Chemosphere 68 (1), 159–168 (2007).

    Article  Google Scholar 

  43. A. S. Carr, A. Boom, H. L. Grimes, B. M. Chase, M. E. Meadows, and A. Harris, “Leaf wax n-alkane distributions in arid zone South African flora: environmental controls, chemotaxonomy and palaeoecological implications”, Org. Geochem. 67, 72–84 (2014).

    Article  Google Scholar 

  44. Ch. Cayet and E. Lichtfouse, “d13C of plant-derived n-alkanes in soil particle-size fractions”, Org. Geochem. 32, 253–258 (2001).

    Article  Google Scholar 

  45. A. Cecinato, E. Guerriero, C. Balducci, and V. Muto, “Use of the PAH fingerprints for identifying pollution sources”, Urban Clim. 10 (4), 630–643 (2014).

    Article  Google Scholar 

  46. M. Chakraborty, Ch. Sharma, J. Pandey, N. Singh, and P. K. Gupta, “Methane emission estimation from landfills in Delhi: a comparative assessment of different methodologies”, Atmos. Environ. 45 (39), 7135–7142 (2011).

    Article  Google Scholar 

  47. K. Chang, R. Baril, M. Hull, N. T. M. Pepe, I. B. Nwachuku, and L. A. Doezema, “Microseepage of C2–C5 alkanes over the Baldwin Hills in Los Angeles”, Atmos. Environ. 87, 170–174 (2014).

    Article  Google Scholar 

  48. W. Chang, A. Akbari, J. Snelgrove, D. Frigon, and S. Ghoshal, “Biodegradation of petroleum hydrocarbons in contaminated clayey soils from a sub-arctic site: the role of aggregate size and microstructure”, Chemosphere 91 (11), 1620–1626 (2013).

    Article  Google Scholar 

  49. W. Chang, M. Dyen, L. Spagnuolo, P. Simon, L. Whyte, and S. Ghoshal, “Biodegradation of semiand non-volatile petroleum hydrocarbons in aged, contaminated soils from a sub-Arctic site: laboratory pilot-scale experiments at site temperatures”, Chemosphere 80, 319–326 (2010).

    Article  Google Scholar 

  50. Y. Chen, S. D. Day, R. K. Shrestha, B. D. Strahm, and P. E. Wiseman, “Influence of urban land development and soil rehabilitation on soil–atmosphere greenhouse gas fluxes”, Geoderma 226–227, 348–353 (2014).

    Article  Google Scholar 

  51. F. Coulon, E. Pelletier, L. Gourhant, and D. Delille, “Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil”, Chemosphere 58, 1439–1448 (2005).

    Article  Google Scholar 

  52. S. K. Das, J. Routh, and A. N. Roychoudhury, “Biomarker evidence of macrophyte and plankton community changes in Zeekoevlei, a shallow lake in South Africa”, J. Paleolimnol. 41, 507–521 (2009).

    Article  Google Scholar 

  53. V. F. Doherty and A. A. Otitoloju, “Monitoring of soil and groundwater contamination following a pipeline explosion and petroleum product spillage in Ijegun, Lagos Nigeria”, Environ. Monit. Assess. 185, 4159–4170 (2013).

    Article  Google Scholar 

  54. G. S. Douglas, K. J. McCarthy, D. T. Dahlen, and J. A. Seavey, “The use of hydrocarbon analyses for environmental assessment and remediation”, J. Soil Contam. 1 (3), 197–216 (1992).

    Article  Google Scholar 

  55. A. Dvorska, K. Komprdova, G. Lammel, J. Klanova, and H. Placha, “Polycyclic aromatic hydrocarbons in background air in central Europe–seasonal levels and limitations for source apportionment”, Atmos. Environ. 46, 147–154 (2012).

    Article  Google Scholar 

  56. A. A. Dymov and D. N. Gabov, “Pyrogenic alterations of podzols at the North-east European part of Russia: morphology, carbon pools, PAH content”, Geoderma 241–242, 230–237 (2015).

    Article  Google Scholar 

  57. E. Eckmeier and G. L. B. Wiesenberg, “Short-chain n-alkanes (C16–20) in ancient soil are useful molecular markers for prehistoric biomass burning”, J. Archaeol. Sci. 36, 1590–1596 (2009).

    Article  Google Scholar 

  58. A. Elshafie, A. Y. Al-Kindi, S. Al-Busaidi, Ch. Bakheit, and S. N. Albahry, “Biodegradation of crude oil and n-alkanes by fungi isolated from Oman Mar”, Pollut. Bull. 54, 1692–1696 (2007).

    Article  Google Scholar 

  59. EPA Method 418.1: Total Recoverable Petroleum Hydrocarbons by IR (Government Printing Office, Washington DC, 1978).

  60. G. Etiope and R. W. Klusman, “Microseepage in drylands: flux and implications in the global atmospheric source sink budget of methane”, Global Planet. Change 72 (4), 265–274 (2010).

    Article  Google Scholar 

  61. K. J. Ficken, B. Li, D. L. Swain, and N. G. Eglinto, “An n-alkane proxy for the sedimentary input of submerged floating freshwater aquatic macrophytes”, Org. Geochem. 31, 745–749 (2000).

    Article  Google Scholar 

  62. P. Fine, E. R. Graber, and B. Yaron, “Soil interactions with petroleum hydrocarbons: abiotic processes”, Soil Technol. 10 (2), 133–153 (1997).

    Article  Google Scholar 

  63. P. Fine and B. Yaron, “Outdoor experiments on enhanced volatilization by venting of kerosene component from soil”, J. Contam. Hydrol. 12 (4), 355–374 (1993).

    Article  Google Scholar 

  64. M. Gauthier, R. L. Bradley, and M. Šimek, “More evidence that anaerobic oxidation of methane is prevalent in soils: is it time to upgrade our biogeochemical models”, Soil Biol. Biochem. 80, 167–174 (2015).

    Article  Google Scholar 

  65. J. Gebert, A. Groengroeft, and E.-M. Pfeiffer, “Relevance of soil physical properties for the microbial oxidation of methane in landfill covers”, Soil Biol. Biochem. 43 (9), 1759–1767 (2011).

    Article  Google Scholar 

  66. Ch. Geng, J. Chen, X. Yang, L. Ren, B. Yin, X. Liu, and Zh. Bai, “Emission factors of polycyclic aromatic hydrocarbons from domestic coal combustion in China”, J. Environ. Sci. 26 (1), 160–166 (2014).

    Article  Google Scholar 

  67. A. R. Geptner, B. Richter, Yu. I. Pikovskii, S. S. Chernyansky, and T. A. Alekseeva, “Hydrothermal polycyclic aromatic hydrocarbons in marine and lagoon sediments at the intersection between Tjörnes Fracture Zone and recent rift zone (Skjálfandi and Öxarfjörður bays), Iceland”, Mar. Chem. 101 (3–4), 153–165 (2006).

    Article  Google Scholar 

  68. M. Gocke, Y. Kuzyakov, and G. L. B. Wiesenberg, “Differentiation of plant derived organic matter in soil, loess and rhizoliths based on n-alkane molecular proxies”, Biogeochemistry 112 (1–3), 23–40 (2013).

    Article  Google Scholar 

  69. C. L. B. Guedes, E. Di Mauro, V. Antunes, and A. Sálvio Mangrich, “Photochemical weathering study of Brazilian petroleum by EPR spectroscopy”, Mar. Chem. 84 (1–2), 105–112 (2003).

    Article  Google Scholar 

  70. B. M. Harper, W. H. Stiver, and R. G. Zytner, “Influence of water content on SVE in a silt loam soil”, Environ. Eng. Sci. 124, 1047–1053 (1998).

    Google Scholar 

  71. M. Hasinger, K. E. Scherr, T. Lundaa, L. Bräuer, C. Zach, and A. P. Loibner, “Changes in isoand n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions”, J. Biotechnol. 157 (4), 490–498 (2012).

    Article  Google Scholar 

  72. C. F. Hodges, L. C. Stephens, and D. A. Campbell, “Ethylene and ethane from Poa pratensis callus and from leaf blades of regenerated and seed-derived plants inoculated with Bipolaris sorokiniana”, J. Plant Physiol. 154 (1), 113–118 (1999).

    Article  Google Scholar 

  73. Y. Hou, S. He, J. Yi, B. Zhang, X. Chen, Y. Wang, J. Zhang, and Ch. Cheng, “Effect of pore structure on methane sorption potential of shales”, Petrol. Explor. Dev. 41 (2), 272–281 (2014).

    Article  Google Scholar 

  74. M. H. Huesemann, T. S. Hausmann, and T. J. Fortman, “Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils”, Biodegradation 15, 261–274 (2014).

    Article  Google Scholar 

  75. P. Isaac, L. A. Sánchez, N. Bourguignon, M. E. Cabral, and M. A. Ferrero, “Indigenous PAH-degrading bacteria from oil-polluted sediments in Caleta Cordova, Patagonia Argentina”, Int. Biodeterior. Biodegrad. 82, 207–214 (2013).

    Article  Google Scholar 

  76. J. Jefimova, N. Irha, J. Reinik, U. Kirso, and E. Steinnes, “Leaching of polycyclic aromatic hydrocarbons from oil shale processing waste deposit: a long-term field study”, Sci. Total Environ. 481, 605–610 (2014).

    Article  Google Scholar 

  77. M. A. Jenks and E. N. Ashworth, “Plant epicuticular waxes: function production andgenetics”, Hortic. Rev. 23, 1–68 (1999).

    Google Scholar 

  78. S.-W. Jeong, J. Jeong, and J. Kim, “Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions”, J. Hazard. Mater. 286, 164–170 (2015).

    Article  Google Scholar 

  79. S. Jurjanz, K. Germain, M. A. Dziurla, H. Juin, and C. Jondreville, “Use of acid-insoluble ash and n-alkanes as markers of soil and plant ingestion by chickens”, Anim. Feed Sci. Technol. 188, 92–101 (2014).

    Article  Google Scholar 

  80. G. Kalpana, T. Madhavi, D. J. Patil, A. M. Dayal, and S. V. Raju, “Light gaseous hydrocarbon anomalies in the near surface soils of Proterozoic Cuddapah basin: implications for hydrocarbon prospects”, J. Petrol. Sci. Eng. 73 (1–2), 161–170 (2010).

    Article  Google Scholar 

  81. C. Ö. Karacan and G. V. R. Goodman, “Analyses of geological and hydrodynamic controls on methane emissions experienced in a Lower Kittanning coal mine”, Int. J. Coal Geol. 98, 110–127 (2012).

    Article  Google Scholar 

  82. L. Ke, T. W. Y. Wong, Y. S. Wong, and N. F. Y. Tam, “Fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp in Hong Kong following an oil spill”, Mar. Pollut. Bull. 45 (1–12), 339–347 (2002).

    Article  Google Scholar 

  83. F. Keppler, J. T. G. Hamilton, M. Braß, and T. Röckmann, “Methane emissions from terrestrial plants under aerobic conditions”, Nature 439, 187–191 (2006).

    Article  Google Scholar 

  84. S. Khan, M. Afzal, S. Iqbal, and Q. M. Khan, “Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils”, Chemosphere 90, 1317–1332 (2013).

    Article  Google Scholar 

  85. F. S. Kinnaman, D. L. Valentine, and S. C. Tyler, “Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane”, Geochim. Cosmochim. Acta 71 (2), 271–283 (2007).

    Article  Google Scholar 

  86. S. Kotelnikova, “Microbial production and oxidation of methane in deep subsurface”, Earth-Sci. Rev. 58 (3–4), 367–395 (2002).

    Article  Google Scholar 

  87. M. Krauss, W. Wilcke, Ch. Martius, A. G. Bandeira, M. V. B. Garcia, and W. Amelung, “Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment”, Environ. Pollut. 135 (1), 143–154 (2005).

    Article  Google Scholar 

  88. P. Kubat, S. Civiš, A. Muck, J. Barek, and J. Zima, “Degradation of pyrene by UV radiation”, J. Photochem. Photobiol., A 132 (1–2), 33–36 (2000).

    Article  Google Scholar 

  89. Th. K. Kuhn, E. S. Krull, A. Bowater, K. Grice, and G. Gleixner, “The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils”, Org. Geochem. 41, 88–95 (2010).

    Article  Google Scholar 

  90. S. Kumar, A. N. Mondal, S. A. Gaikwad, S. Devotta, and R. N. Singh, “Qualitative assessment of methane emission inventory from municipal solid waste disposal sites: a case study”, Atmos. Environ. 38 (29), 4921–4929 (2004).

    Article  Google Scholar 

  91. L. Kurteeva, S. Morozov, and A. Anshits, “The sources of carcinogenic PAH emission in aluminium production using Soderberg cells”, NATO Sci. Ser., IV 65 (1), 57–65 (2006).

    Google Scholar 

  92. S. Labana, M. Kapur, D. Malik, D. Prakash, and R. Jain, “Diversity, biodegradation, and bioremediation of polycyclic aromatic hydrocarbons”, Environ. Biorem. Technol., 409–443 (2007).

    Chapter  Google Scholar 

  93. Y. Li and Y. Xiong, “Identification and quantification of mixed sources of oil spills based on distributions and isotope profiles of long-chain n-alkanes”, Mar. Pollut. Bull. 58, 1868–1873 (2009).

    Article  Google Scholar 

  94. E. Lichtfouse, G. Bardoux, A. Mariotti, J. Balesdent, D. C. Ballentine, and S. A. Macko, “Molecular, 13C and 14C evidence for the allochthonous and ancient origin of C16–C18 n-alkanes in modern soils”, Geochim. Cosmochim. Acta 61 (9), 1891–1898 (1997).

    Article  Google Scholar 

  95. P. G. Liu, T. Ch. Chang, Ch.-H. Chen, M.-Zh. Wang, and H.-W. Hsu, “Effects of soil organic matter and bacterial community shift on bioremediation of dieselcontaminated soil”, Int. Biodeterior. Biodegrad. 85, 661–670 (2013).

    Article  Google Scholar 

  96. Y.-F. Lu and M. Lu, “Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms”, J. Hazard. Mater. 285, 535–541 (2015).

    Article  Google Scholar 

  97. Zh. Lu, F. Zeng, N. Xue, and F. Li, “Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site”, Science Total Environ. 433, 50–57 (2012).

    Article  Google Scholar 

  98. A. A. MacKay and P. M. Gschwend, “Enhanced concentrations of PAHs in groundwater at a coal tar site”, Environ. Sci. Technol. 35, 1320–1328 (2001).

    Article  Google Scholar 

  99. M. P. Maila, P. Randima, K. Dronen, and T. E. Cloete, “Soil microbial communities: Influence of geographic location and hydrocarbon pollutants”, Soil Biol. Biochem. 38, 303–310 (2006).

    Article  Google Scholar 

  100. B. Maliszewska-Kordybach, “Dissipation of polycyclic aromatic hydrocarbons in freshly contaminated soils–the effect of soil physicochemical properties and aging”, Water, Air, Soil Pollut. 168, 113–128 (2005).

    Article  Google Scholar 

  101. B. Maliszewska-Kordybach, B. Smreczak, and A. Klimkowicz-Pawlas, “Concentrations, sources, and spatial distribution of individual polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in the Eastern part of the EU: Poland as a case study”, Sci. Total Environ. 407, 3746–3753 (2009).

    Article  Google Scholar 

  102. R. Malone, R. W. Warner, V. P. Evangelou, and J. L. Wong, “Transport of benzene and trichloroethylene through landfill soil liner mixed with coal slurry”, Waste Manage. Res. 12, 417–428 (1994).

    Article  Google Scholar 

  103. D. Mao, R. Lookman, H. van de Weghe, R. Weltens, G. Vanermen, N. De Brucker, and L. Diels, “Estimation of ecotoxicity of petroleum hydrocarbon mixtures in soil based on HPLC–GCXGC analysis”, Chemosphere 77 (11), 1508–1513 (2009).

    Article  Google Scholar 

  104. R. Margesin, Ch. Moertelmaier, and J. Mair, “Lowtemperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains”, Int. Biodeterior. Biodegrad. 84, 185–191 (2013).

    Article  Google Scholar 

  105. B. C. Martin, S. J. George, C. A. Price, M. H. Ryan, and M. Tibbett, “The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions”, Sci. Total Environ. 472, 642–653 (2014).

    Article  Google Scholar 

  106. M. R. McGillen, C. J. Percival, T. Raventos-Duran, G. Sanchez-Reyna, and D. E. Shallcross, “Can topological indices be used to predict gas-phase rate coefficients of importance to tropospheric chemistry? Free radical abstraction reactions of alkanes”, Atmos. Environ. 40, 2488–2500 (2006).

    Article  Google Scholar 

  107. J. E. T. McLain and D. A. Martens, “Studies of methane fluxes reveal that desert soils can mitigate global change”, in Proceedings of the 5th Conference on Research and Resource Management in the Southwestern Deserts (Tucson, 2004).

    Google Scholar 

  108. S. Mitra, D. Majumdar, and R. Wassmann, “Methane production and emission in surface and subsurface rice soils and their blends”, Agric., Ecosyst. Environ. 158, 94–102 (2012).

    Article  Google Scholar 

  109. H. A. Moubasher, A. K. Hegazy, N. H. Mohamed, Y. M. Moustafa, H. F. Kabiel, and A. A. Hamad, “Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms”, Int. Biodeterior. Biodegrad. 98, 113–120 (2015).

    Article  Google Scholar 

  110. N. Narvaez, A. Brosh, and W. Pittroff, “Use of n-alkanes to estimate seasonal diet composition and intake of sheep and goats grazing in California chaparra”, Small Ruminant Res. 104 (1–3), 129–138 (2012).

    Article  Google Scholar 

  111. B. I. Olu-Owolabi, P. N. Diagboya, and K. O. Adebowale, “Evaluation of pyrene sorption–desorption on tropical soils”, J. Environ. Manage. 137, 1–9 (2014).

    Article  Google Scholar 

  112. R. S. Oremland, M. J. Whiticar, F. E. Strohmaier, and R. P. Kiene, “Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments”, Geochim. Cosmochim. Acta 52 (7), 1895–1904 (1988).

    Article  Google Scholar 

  113. Ch. Peng, W. Chen, X. Liao, M. Wang, Zh. Ouyang, W. Jiao, and Y. Bai, “Polycyclic aromatic hydrocarbons in urban soils of Beijing: status, sources, distribution and potential risk”, Environ. Pollut. 159 (3), 802–808 (2011).

    Article  Google Scholar 

  114. Ch. Peng, M. Wang, W. Chen, and A. C. Chang, “Mass balance-based regression modeling of PAHs accumulation in urban soils, role of urban development”, Environ. Pollut. 197, 21–27 (2015).

    Article  Google Scholar 

  115. A. Pernot, S. Ouvrard, P. Leglize, F. Watteau, D. Derrien, C. Lorgeoux, L. Mansuy-Huault, and P. Faure, “Impact of fresh organic matter incorporation on PAH fate in a contaminated industrial soil”, Sci. Total Environ. 497–498, 345–352 (2014).

    Article  Google Scholar 

  116. M. G. Perrone, C. Carbone, D. Faedo, L. Ferrero, A. Maggioni, G. Sangiorgi, and E. Bolzacchini, “Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from vehicles coming within different European classes”, Atmos. Environ. 82, 391–400 (2014).

    Article  Google Scholar 

  117. J. Pinedo, R. Ibáñez, J. P. A. Lijzen, and A. Irabien, “Human risk assessment of contaminated soils by oil products: total TPH content versus fraction approach”, Hum. Ecol. Risk Assess. Int. J. 20 (5), 1231–1248 (2014).

    Article  Google Scholar 

  118. J. Pinedo, R. Ibáñez, O. Primo, P. Gomez, and A. Irabien, “Preliminary assessment of soil contamination by hydrocarbon storage activities: main site investigation selection”, J. Geochem. Explor., B 147, 283–290 (2014).

    Article  Google Scholar 

  119. N. Praeg, A. O. Wagner, and P. Illmer, “Effects of fertilization, temperature and water content on microbial properties and methane production and methane oxidation in subalpine soils”, Eur. J. Soil Biol. 65, 96–106 (2014).

    Article  Google Scholar 

  120. Zh. Rao, Zh. Zhu, G. Jia, A. C. G. Henderson, Q. Xue, and S. Wang, “Compound specific sD values of long chain n-alkanes derived from terrestrial higher plants are indicative of the sD of meteoric waters: evidence from surface soils in eastern China”, Org. Geochem. 40 (8), 922–930 (2009).

    Article  Google Scholar 

  121. M. A. Rasheed, M. S. Kalpana, M. Veena Prasanna, M. Lakshmi, T. Madhavi, D. M. Tiwari, D. J. Patil, A. M. Dayal, and S. V. Raju, “Geo-microbial and light gaseous hydrocarbon anomalies in the near surface soils of Deccan Syneclise basin, India: implications to hydrocarbon resource potential”, J. Petrol. Sci. Eng. 84–85, 33–41 (2012).

    Article  Google Scholar 

  122. F. J. Rivas, “Polycyclic aromatic hydrocarbons sorbed on soils: a short review of chemical oxidation based treatments”, J. Hazard. Mater. 138 (2), 234–251 (2006).

    Article  Google Scholar 

  123. J. P. Salanitro, “Bioremediation of petroleum hydrocarbons in soil”, Adv. Agron. 72, 53–105 (2001).

    Article  Google Scholar 

  124. S. O. Sojinu, O. O. Sonibare, O. Ekundayo, and E. Y. Zeng, “Assessing anthropogenic contamination in surface sediments of Niger Delta, Nigeria with fecal sterols and n-alkanes as indicators”, Sci. Total Environ. 441, 89–96 (2012).

    Article  Google Scholar 

  125. J. Schellekens and P. Buurman, “n-Alkane distributions as palaeoclimatic proxies in ombrotrophic peat: the role of decomposition and dominant vegetation”, Geoderma 164, 112–121 (2011).

    Article  Google Scholar 

  126. F. M. Schwandner, T. M. Seward, A. P. Gize, K. Hall, and V. J. Dietrich, “Halocarbons and other trace heteroatomic organic compounds in volcanic gases from volcano (Aeolian Islands, Italy)”, Geochim. Cosmochim. Acta 101, 191–221 (2013).

    Article  Google Scholar 

  127. H. Sechman, “Detailed compositional analysis of hydrocarbons in soil gases above multi-horizon petroleum deposits–a case study from western Poland”, Appl. Geochem. 27 (10), 2130–2147 (2012).

    Article  Google Scholar 

  128. H. Sechman, M. J. Kotarba, J. Fiszer, and M. Dzieniewicz, “Distribution of methane and carbon dioxide concentrations in the near-surface zone and their genetic characterization at the abandoned “Nowa Ruda” coal mine (Lower Silesian Coal basin, SW Poland)”, Int. J. Coal Geol. 116–117, 1–16 (2013).

    Article  Google Scholar 

  129. N. Serrano-Silva, Y. Sarria-Guzman, L. Dendooven, and M. Luna-Gudo, “Methanogenesis and methanotrophy in soil: a review”, Pedosphere 24 (3), 291–307 (2014).

    Article  Google Scholar 

  130. J. Shang, J. Chen, Zh. Shen, Y. Wang, and Ruan, A. “Effects of varying estuarine conditions on the sorption of phenanthrene to sediment particles of Yangtze estuary”, Mar. Pollut. Bull. 76 (1–2), 139–145 (2013).

    Article  Google Scholar 

  131. B. R. T. Simoneit, “Application of molecular marker analysis to vehicular exhaust for source reconciliations”, Int. J. Environ. Anal. Chem. 22, 203–233 (1985).

    Article  Google Scholar 

  132. L. L. Smith and J. R. Strickland, “Improved GC/MS method for quantization of n-alkanes in plant and fecal material”, J. Agric. Food Chem. 55, 7301–7307 (2007).

    Article  Google Scholar 

  133. A. A. Soares, J. T. Albergaria, V. F. Domingues, M. Conceicao, M. Alvim-Ferraz, and C. Delerue-Matos, “Remediation of soils combining soil vapor extraction and bioremediation: benzene”, Chemosphere 80, 823–828 (2010).

    Article  Google Scholar 

  134. S. O. Sojinu, O. O. Sonibare, O. Ekundayo, and E. Y. Zeng, “Assessing anthropogenic contamination in surface sediments of Niger Delta, Nigeria with fecal sterols and n-alkanes as indicators”, Sci. Total Environ. 441, 89–96 (2012).

    Article  Google Scholar 

  135. M. Soleimani, M. Farhoudi, and J. H. Christensen, “Chemometric assessment of enhanced bioremediation of oil contaminated soils”, J. Hazard. Mater. 254–255, 372–381 (2013).

    Article  Google Scholar 

  136. Y.-H. Su and Y.-G. Zhu, “Uptake of selected PAHs from contaminated soils by rice seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution”, Environ. Pollut. 155 (2), 359–365 (2008).

    Article  Google Scholar 

  137. F. Suja, F. Rahim, M. R. Taha, N. Hambali, M. R. Razali, A. Khalid, and A. Hamzah, “Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations”, Int. Biodeterior. Biodegrad. 90, 115–122 (2014).

    Article  Google Scholar 

  138. R. A. Tahhan, T. G. Ammari, S. J. Goussous, and H. I. Al-Shdaifat, “Enhancing the biodegradation of total petroleum hydrocarbons in oily sludge by a modified bioaugmentation strategy”, Int. Biodeterior. Biodegrad. 65 (1), 130–134 (2011).

    Article  Google Scholar 

  139. V. Talyan, R. P. Dahiya, S. Anand, and T. R. Sreekrishnan, “Quantification of methane emission from municipal solid waste disposal in Delhi”, Resour., Conserv. Recycl. 50 (3), 240–259 (2007).

    Article  Google Scholar 

  140. J. Tang, X. Lu, Q. Sun, and W. Zhu, “Aging effect of petroleum hydrocarbons in soil under different attenuation conditions”, Agric., Ecosyst. Environ. 149, 109–117 (2012).

    Article  Google Scholar 

  141. F. Tassi, M. Bonini, G. Montegrossi, F. Capecchiacci, B. Capaccioni, and O. Vasell, “Origin of light hydrocarbons in gases from mud volcanoes and CH4-rich emissions”, Chem. Geol. 294–295, 113–126 (2012).

    Article  Google Scholar 

  142. K. R. Tate, “Soil methane oxidation and land-use change–from process to mitigation”, Soil Biol. Biochem. 80, 260–272 (2015).

    Article  Google Scholar 

  143. K. R. Tate, A. S. Walcroft, and C. Pratt, “Varying atmospheric methane concentrations affect soil methane oxidation rates and methanotroph populations in pasture, an adjacent pine forest, and a landfill”, Soil Biol. Biochem. 52, 75–81 (2012).

    Article  Google Scholar 

  144. M. C. Tejeda-Agredano, S. Gallego, J. Vila, M. Grifoll, J. J. Ortega-Calvo, and M. Cantos, “Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil”, Soil Biol. Biochem. 57, 830–840 (2013).

    Article  Google Scholar 

  145. G. Thomas and E. J. Zachariah, “Ground level volume mixing ratio of methane in a tropical coastal city”, Environ. Monit. Assess. 184, 1857–1863 (2012).

    Article  Google Scholar 

  146. M. Tobiszewski and J. Namieśnik, “PAH diagnostic ratios for the identification of pollution emission sources”, Environ. Pollut. 162, 110–119 (2012).

    Article  Google Scholar 

  147. A. Ueno, M. Hasanuzzaman, I. Yumoto, and H. Okuyama, “Verification of degradation of n-alkanes in diesel oil by Pseudomonas aeruginosa strain WatG”, Soil Microcosms Curr. Microbiol. 52 (3), 182–185 (2006).

    Article  Google Scholar 

  148. A. Uhler and S. Emsbo-Mattingly, “Environmental stability of PAH source indices in pyrogenic tars”, Bull. Environ. Contam. Toxicol. 76, 689–696 (2006).

    Article  Google Scholar 

  149. O. van Cleemput, A. S. El-Sebaay, and L. Baert, “Evolution of gaseous hydrocarbons from soil: effect of moisture content and nitrate level”, Soil Biol. Biochem. 15 (5), 519–524 (1983).

    Article  Google Scholar 

  150. Ch. H. Vane, A. W. Kim, D. J. Beriro, M. R. Cave, K. Knights, V. Moss-Hayes, and P. C. Nathanail, “Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK”, Appl. Geochem. 51, 303–314 (2014).

    Article  Google Scholar 

  151. A. K. Varma, B. Hazra, S. K. Samad, S. Panda, and V. A. Mendhe, “Methane sorption dynamics and hydrocarbon generation of shale samples from West Bokaro and Raniganj basins, India”, J. Nat. Gas Sci. Eng. 21, 1138–1147 (2014).

    Article  Google Scholar 

  152. J. A. Villa and W. J. Mitsch, “Methane emissions from five wetland plant communities with different hydroperiods in the Big Cypress swamp region of Florida everglades”, Ecohydrol. Hydrobiol. 14 (4), 253–266 (2014).

    Article  Google Scholar 

  153. M. Villalobos, A. P. Avila-Forcada, and M. E. Gutierrez-Ruiz, “An improved gravimetric method to determine total petroleum hydrocarbons in contaminated soils”, Water, Air, Soil Pollut. 194, 151–161 (2008).

    Article  Google Scholar 

  154. J. K. Volkman, R. Alexander, R. I. Kagi, and G. W. Woodhouse, “Demethylated heptanes in crude oils and their applications in petroleum geochemistry”, Geochim. Cosmochim. Acta 47, 785–794 (1983).

    Article  Google Scholar 

  155. S. G. Wakeham, “Aliphatic and polycyclic aromatic hydrocarbons in Black Sea sediments”, Mar. Chem. 53, 187–205 (1996).

    Article  Google Scholar 

  156. J. Walworth, P. Harvey, and I. Snape, “Low temperature soil petroleum hydrocarbon degradation at various oxygen levels”, Cold Reg. Sci. Technol. 96, 117–121 (2013).

    Article  Google Scholar 

  157. C. Wang, X. Wang, P. Gong, and T. Yao, “Polycyclic aromatic hydrocarbons in surface soil across the Tibetan Plateau: spatial distribution, source and airsoil exchange”, Environ. Pollut. 184, 138–144 (2014).

    Article  Google Scholar 

  158. S. Wang, Zh. Song, T. Cao, and X. Song, “The methane sorption capacity of Paleozoic shales from the Sichuan basin, China”, Mar. Petrol. Geol. 44, 112–119 (2013).

    Article  Google Scholar 

  159. X.-T. Wang, L. Chen, X.-K. Wang, B.-L. Lei, Y.-F. Sun, J. Zhou, and M.-H. Wu, “Occurrence, sources and health risk assessment of polycyclic aromatic hydrocarbons in urban (Pudong) and suburban soils from Shanghai in China”, Chemosphere 119, 1224–1232 (2015).

    Article  Google Scholar 

  160. Zh. Wang, S. X. Chang, H. Chen, and X. Han, “Widespread non-microbial methane production by organic compounds and the impact of environmental stresses”, Earth-Sci. Rev. 127, 193–202 (2013).

    Article  Google Scholar 

  161. A. Watts, T. Ballestero, and K. Gardner, “Soil and atmospheric inputs to PAH concentrations in salt marsh plants”, Water, Air, Soil Pollut. 189, 253–263 (2008).

    Article  Google Scholar 

  162. M. Wei, Z. Yu, Zh. Jiang, and H. Zhang, “Microbial diversity and biogenic methane potential of a thermogenic-gas coal mine”, Int. J. Coal Geol. 134–135, 96–107 (2014).

    Article  Google Scholar 

  163. W. Weisman, Analysis of Petroleum Hydrocarbons in Environmental Media (Scientific Publishers, Amherst, 1998).

    Google Scholar 

  164. W. Wilcke, “Polycyclic aromatic hydracarbons (PAHs) in soil–a review”, J. Plant Nutr. Soil Sci. 163, 229–248 (2000).

    Article  Google Scholar 

  165. E. Winquist, K. Björklöf, E. Schultz, M. Räsänen, K. Salonen, F. Anasonye, T. Cajthaml, K. T. Steffen, K. S. Jørgensen, and M. Tuomela, “Bioremediation of PAH-contaminated soil with fungi–from laboratory to field scale”, Int. Biodeterior. Biodegrad., C 86, 238–247 (2014).

    Article  Google Scholar 

  166. G. Wu, X. Zhu, H. Ji, and D. Chen, “Molecular modeling of interactions between heavy crude oil and the soil organic matter coated quartz surface”, Chemosphere 119, 242–249 (2015).

    Article  Google Scholar 

  167. R. Xiao, J. Bai, J. Wang, Q. Lu, Q. Zhao, B. Cui, and X. Liu, “Polycyclic aromatic hydrocarbons (PAHs) in wetland soils under different land uses in a coastal estuary: toxic levels, sources and relationships with soil organic matter and water-stable aggregates”, Chemosphere 110, 8–16 (2014).

    Article  Google Scholar 

  168. Ch. Xu, D. Dong, X. Meng, X. Su, X. Zheng, and Y. Li, “Photolysis of polycyclic aromatic hydrocarbons on soil surfaces under UV irradiation”, J. Environ. Sci. 25 (3), 569–575 (2013).

    Article  Google Scholar 

  169. L. Yang, M. Jin, Ch. Tong, and Sh. Xie, “Study of dynamic sorption and desorption of polycyclic aromatic hydrocarbons in silty-clay soil”, J. Hazard. Mater. 244–245, 77–85 (2013).

    Article  Google Scholar 

  170. Y. Yang, Th. Hofmann, C. Pies, and P. Grathwohl, “Sorption of polycyclic aromatic hydrocarbons (PAHs) to carbonaceous materials in a river floodplain soil”, Environ. Pollut. 156 (3), 1357–1363 (2008).

    Article  Google Scholar 

  171. R. O. Yusuf, Z. Z. Noor, A. H. Abba, M. A. A. Hassan, and M. F. M. Din, “Methane emission by sectors: a comprehensive review of emission sources and mitigation methods”, Renewable Sustainable Energy Rev. 16 (7), 5059–5070 (2012).

    Article  Google Scholar 

  172. C.-Y. Zhang, Z. He, S. Zhang, M.-Y. Yin, Z. Ning, and Y.-C. Liu, “Quantitative significance of functional genes of methanotrophs and propanotrophs in soil above oil and gas fields, China”, J. Petrol. Sci. Eng. 120, 170–176 (2014).

    Article  Google Scholar 

  173. J. Zhang, J. Dai, H. Chen, X. Du, W. Wang, and R. Wang, “Petroleum contamination in groundwater/air and its effects on farmland soil in the outskirt of an industrial city in China”, J. Geochem. Explor. 118, 19–29 (2012).

    Article  Google Scholar 

  174. J. Zhang, J. Dai, X. Du, F. Li, W. Wang, and R. Wang, “Distribution and sources of petroleum-hydrocarbon in soil profiles of the Hunpu wastewater-irrigated area, China’s northeast”, Geoderma 173–174, 215–223 (2012).

    Article  Google Scholar 

  175. J. Zhang, R. Wang, X. Du, F. Li, and J. Dai, “Characterization of contamination, source and degradation of petroleum between upland and paddy fields based on geochemical characteristics and phospholipid fatty acids”, J. Environ. Sci. 24 (11), 1995–2003 (2012).

    Article  Google Scholar 

  176. J. Zhang, J. Zeng, and M. He, “Effects of temperature and surfactants on naphthalene and phenanthrene sorption by soil”, J. Environ. Sci. 21 (5), 667–674 (2009).

    Article  Google Scholar 

  177. L. Zhang, Ch. Xu, Zh. Chen, X. Li, and P. Li, “Photodegradation of pyrene on soil surfaces under UV light irradiation”, J. Hazard. Mater. 173 (1–3), 168–172 (2010).

    Article  Google Scholar 

  178. Y. Zhang, Sh. Zhu, R. Xiao, J. Wang, and F. Li, “Vertical transport of polycyclic aromatic hydrocarbons in different particle-size fractions of sandy soils”, Environ. Geol. 53, 1165–1172 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Gennadiev.

Additional information

Original Russian Text © A.N. Gennadiev, Yu.I. Pikovskii, A.S. Tsibart, M.A. Smirnova, 2015, published in Pochvovedenie, 2015, No. 10, pp. 1195–1209.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gennadiev, A.N., Pikovskii, Y.I., Tsibart, A.S. et al. Hydrocarbons in soils: Origin, composition, and behavior (Review). Eurasian Soil Sc. 48, 1076–1089 (2015). https://doi.org/10.1134/S1064229315100026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229315100026

Keywords

Navigation