Skip to main content
Log in

Stable carbon and oxygen isotopes in pedogenic carbonate coatings of chernozems in the Southern Cis-Baikalia as indicators of local environmental changes

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Carbonate coatings formed on the lower surfaces of pebble inclusions in the Holocene-Late Pleistocene sediments on the Irkutsk-Cheremkhovo Plain have been studied. The coupled analysis of the carbon isotope composition of the soil organic matter and carbonate coatings has indicated the formation of coatings under conditions of phytocenoses with the predominance of C3 plants. A significant effect of the atmospheric CO2 on the carbon isotope composition in the coatings has been noted, which could be related to their formation under low soil respiration rates. The latter was apparently due to the periodic freezing of the soil, which affected the structure of the coatings and was most manifested in the formation of spherulites in their outer layers. The carbonate coatings consist of two laminae significantly differing in their structure and stable isotope composition, which allows separating two main stages of their formation. The lightening of the carbon isotope composition in the outer (younger) layers of the coatings compared to their inner (older) ones coincides with the increase of the δ18O values, which points to changes of the environmental conditions in the studied area during the formation of the coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agroclimatic Reference Book of Irkutsk Oblast (Gidrometizdat., Leningrad, 1962) [in Russian].

  2. E. V. Arinushkina, Handbook on the Chemical Analyses of Soils (Izd. Mosk. Gos. Univ., Moscow, 1970) [in Russian].

    Google Scholar 

  3. G. A. Vorob’eva, “Paleogeographic conditions of the formation and stratification of the deposits of Sosnovyi Bor, a multilayered monument of the Stone Age in the south of Central Siberia,” in Paleoethnological Investigations in the South of Central Siberia (Izd. Irkutsk Gos. Univ., Irkutsk, 1991), pp. 15–25 [in Russian].

    Google Scholar 

  4. G. A. Vorob’eva, Soil as a Record of Environmental Events in the Baikal Region and the Problems of Soil Evolution and Soil Classification (Izd. Irutksk. Gos. Univ., Irkutsk, 2010) [in Russian].

    Google Scholar 

  5. G. A. Vorob’eva, Kh. A. Arslanov, N. E. Berdnikova, N. V. Vashukevich, Yu. V. Ryzhov, N. V. Chaika, “Sediments of the Karginsk soils in sections of geoarchaeological objects in the southern Baikal region,” in Ancient Cultures of Mongolia and Baikal Siberia Mater. Int. Conf. (Izd. Irkutsk. Gos. Univ., Irkutsk, 2011), Vol. 2, pp. 49–57 [in Russian].

    Google Scholar 

  6. G. A. Vorob’eva, G. I. Medvedev, E. O. Rogovskoi, E. A. Lipina, P. N. Rebrikov, M. V. Kudelya, “The study of the Kazantsevskie sediments and included artifacts at Georgievskoe-1 site of the southern Angara region,” in Problems of Archaeology and Ethnography of Siberia and Contiguous Territories (Izd. Inst. Arkheolog. Etnogr. Antropol. SO RAN, Novosibirsk, 1997), pp. 29–36 [in Russian].

    Google Scholar 

  7. Irkutsk-Chermkhovo Industrial Region (Irkutsk, 1969) [in Russian].

  8. Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

  9. Classification and Diagnostic System of Soils of the Soviet Union (Kolos, Moscow, 1977) [in Russian].

  10. I. V. Kovda, “Information significance of carbonate pedofeatures for reconstructing the processes and factors of soil formation,” in Soil Memory: Soil as a Memory of the Biosphere-Geosphere-Anthroposphere Interactions (Izd. LKI, Moscow, 2008) [in Russian].

    Google Scholar 

  11. I. V. Kovda, “Carbonate pedofeatures in soils: old and new problems,” in Soils, Biogeochemical Cycles, and the Biosphere (KMK, Moscow, 2004), pp. 115–136 [in Russian].

    Google Scholar 

  12. A. A. Kozlova and A. P. Makarova, Ecological Factors of Soil Formation in the Southern Cis-Baikal Region (Izd. Irkut. Gos. Univ., Irkutsk, 2012) [in Russian].

    Google Scholar 

  13. V. T. Kolesnichenko, “Water and temperature regimes and agrophysical properties of leached chernozems in the forest-steppe of East Siberia,” in Soils, Fertilizers, and Crop Yields in the Baikal Forest-Steppe (Vost.-Sib. kn. izd., Irkutsk, 1965), pp. 42–60 [in Russian].

    Google Scholar 

  14. G. G. Litvintsev and G. I. Tarakanova, “On the stratigraphy of Quaternary deposits in the Irkutsk Depression,” in Geology and Mineral Deposits of the South of Siberian Platform, (Nedra, Leningrad, 1970), pp. 88–106 [in Russian].

    Google Scholar 

  15. N. A. Logachev, T. K. Lomonosova, and V. M. Klimanova, Cenozoic Deposits in the Irkutsk Depression (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  16. E. I. Ravskii, Sediment Accumulation and Climate of the Inner Asia in the Quaternary Period (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  17. Ya. G. Ryskov, A. A. Velichko, V. I. Nikolaev, S. A. Oleinik, S. N. Timireva, V. P. Nechaev, P. G. Panin, T. D. Morozova, “Reconstruction of the paleotemperature and precipitation in the Pleistocene according to the isotope composition of humus and carbonates in loess on the Russian Plain,” Eur. Soil Sc. 41(9), 937–945 (2008).

    Article  Google Scholar 

  18. Ya. G. Ryskov and V. A. Demkin, The Development of Soils and Environment in the Steppes of Southern Urals in the Holocene (an Experience in Reconstruction with the Use of the Methods of the Geochemistry of Stable Isotopes) (ONTI PNTs RAN, Pushchino, 1997) [in Russian].

    Google Scholar 

  19. Ya. G. Ryskov, S. V. Mergel’, I. V. Kovda, and E. G. Morgun, “Stable isotopes of carbon and oxygen as indicators of the conditions of formation of pedogenic carbonates,” Pochvovedenie, No. 4, 405–414 (1995).

    Google Scholar 

  20. Reference Book on Climate of the USSR. Meteorological Data on Separate Years. Irkutsk Oblast and Southwestern Buryatia, Iss. 22, Part 2 Atmospheric Precipitation (Irkutsk, 1975) [in Russian].

  21. O. S. Khokhlova, A. A. Khokhlov, O. A. Chichagova, A. M. Kuznetsova, S. A. Oleinik, “Transformation of carbonate pedofeatures in paleosols buried under kurgans in the North Caucasus Region,” Eur. Soil Sci. 41(9), 923–936 (2008).

    Article  Google Scholar 

  22. R. Amundson, O. Chadwick, J. Sowers, and H. Doner, “The stable isotope chemistry of pedogenic carbonates at Kyle Canyon, Nevada,” Soil Sci. Soc. Am. J. 53, 201–210 (1989).

    Article  Google Scholar 

  23. R. Amundson, L. Stern, T. Baisden, and Y. Wang, “The isotopic composition of soil and soil-respired CO2,” Geoderma 82, 83–114 (1998).

    Article  Google Scholar 

  24. V. Andreychouk, B. Ridush, and E. Galuskin, “Pionerka Cave: Conditions and specificity of cryogenic mineral formation,” Speleol. Karstol., No. 2, 54–69 (2009).

    Google Scholar 

  25. M. Catoni, G. Falsone, and E. Bonifacio, “Assessing the origin of carbonates in a complex soil with a suite of analytical methods,” Geoderma 175–176, 47–57 (2012).

    Article  Google Scholar 

  26. T. Cerling, “The stable isotopic composition of soil carbonate and its relationship to climate,” Earth Planet Sci. Lett. 71, 229–240 (1984).

    Article  Google Scholar 

  27. T. Cerling, J. Quade, Y. Wang, and J. Bowman, “Carbon isotopes in soils and paleosols as ecology and paleoecology indicators,” Nature 341, 138–139 (1989).

    Article  Google Scholar 

  28. M.-A. Courty, C. Marlin, L. Dever, P. Tremblay, P. Vachier, “The properties, genesis and environmental significance of calcitic pendents from the High Arctic (Spitsbergen),” Geoderma 61, 71–102 (1994).

    Article  Google Scholar 

  29. T. Desjardins, F. Andreux, B. Volkoff, and C. C. Cerri, “Organic carbon and 13C contents in soils and soil sizefractions, and their changes due to deforestation and pasture installation in eastern Amazonia,” Geoderma 61, 103–118 (1994).

    Article  Google Scholar 

  30. P. Deutz, I. P. Montanez, H. C. Monger, and J. Morrison, “Morphology and isotope heterogeneity of Late Quaternary pedogenic carbonates: implications for paleosol carbonates as paleoenvironmental proxies,” Palaeogeog. Palaeoclim. Palaeoecol. 166, 293–317 (2001).

    Article  Google Scholar 

  31. S. I. Dworkin, L. Nordt, and S. Atchley, “Determining terrestrial paleotemperatures using the oxygen isotopic composition of pedogenic carbonate,” Earth Planet. Sci. Lett. 237, 56–68 (2005).

    Article  Google Scholar 

  32. J. Ferrio, A. Florit, A. Vega, L. Serrano, J. Voltas, “Δ13C and tree-ring width reflect different drought responses in Quercus ilex and Pinus halepensis,” Oecologia 442, 512–518 (2003).

    Article  Google Scholar 

  33. D. Fox and P. L. Koch, “Carbon and oxygen isotopic variability in Neogene paleosol carbonates: constraints on the evolution of C4 grasslands,” Palaeogr. Palaeocl. Palaeoecol. 207, 305–329 (2004).

    Article  Google Scholar 

  34. M. Gocke, K. Pustovoytov, P. Kühn, G. L. B. Wiesenberg, M. Löscher, Y. Kuzyakov, “Carbonate rhizoliths in loess and their implications for paleoenvironmental reconstruction revealed by isotopic composition: δ13C, 14C,” Chem. Geol. 283, 251–260 (2011).

    Article  Google Scholar 

  35. E. Kelly, S. Blecker, C. Yonker, C. Olson, E. Wohl, L. Todd, “Stable isotope composition of soil organic matter and phytoliths as paleoenvironmental indicators,” Geoderma 82, 59–81 (1998).

    Article  Google Scholar 

  36. C. Koerner, G. Farquhar, and S. Wong, “Carbon isotope discrimination by plants follows latitudinal and altitudinal trends,” Oecologia 88, 30–40 (1991).

    Article  Google Scholar 

  37. I. Kovda, C. Mora, and L. Wilding, “Stable Isotope compositions of pedogenic carbonates and soil organic matter in a temperate climate Vertisol with gilgai, Southern Russia,” Geoderma 136, 423–435 (2006).

    Article  Google Scholar 

  38. B. Lacka, M. Lanczont, and T. Madeyska, “Oxygen and carbon stable isotope composition of authigenic carbonates in loess sequences from the Carpathian Margin and Podolia, as a palaeoclimatic record,” Quat. Intern. 198, 136–151 (2009).

    Article  Google Scholar 

  39. B. Liu, F. Phillips, and A. Campbell, “Stable carbon and oxygen isotopes of pedogenic carbonates, Ajo Mountains, Southern Arizona: implications for paleoenvironmental change,” Palaeogeog. Palaeoclimatol. Palaeoecol. 124, 233–246 (1996).

    Article  Google Scholar 

  40. W. Liu, H. Yang, Y. Sun, and X. Wang, “δ13C values of loess total carbonate: a sensitive proxy for Asian summer monsoon in arid northwestern margin of the Chinese Loess Plateau,” Chem. Geol. 284, 317–322 (2011).

    Article  Google Scholar 

  41. M. N. Machette, “Calcic soils of the south-western United States,” Geol. Soc. Am. Spec. Pap, No. 203, 1–21 (1985).

    Google Scholar 

  42. H. Monger, D. Cole, J. Gish, and T. Giordano, “Stable carbon and oxygen isotopes in quaternary soil carbonates as indicators of ecogeomorphic changes in the northern Chihuahuan Desert, USA,” Geoderma 82, 137–172 (1998).

    Article  Google Scholar 

  43. M. Pansu and J. Gautheyrou, Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods (Springer, Berlin, 2006), pp. 15–42 (2006).

    Book  Google Scholar 

  44. K. Pustovoytov, “Pedogenic carbonate cutans on clasts in soils as a record of history of grassland ecosystems,” Palaeogeog., Palaeoclimatol. Palaeoecol. 177, 199–214 (2002).

    Article  Google Scholar 

  45. K. Pustovoytov, K. Schmidt, and H. Taubald, “Evidence for Holocene environmental changes in the northern fertile crescent provided by pedogenic carbonate coatings,” Quat. Res. 67, 315–327 (2007).

    Article  Google Scholar 

  46. J. Quade, T. Cerling, and J. Bowman, “Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the Southern Great Basin, United States,” Geol. Soc. Am. Bull. 101, 464–475 (1989).

    Article  Google Scholar 

  47. J. Quade, C. Garzione, and J. Eiler, “Paleoelevation reconstruction using pedogenic carbonates,” Rev. Mineral. Geochem. 66, 53–88 (2007).

    Article  Google Scholar 

  48. J. Quade, J. Rech, C. Latorre, J. L. Betancourt, E. Gleeson, M. Kalin, “Soils at the hyperarid margin: the isotopic composition of soil carbonate from the Atacama Desert, Northern Chile,” Geochim. Cosmochim. Acta 71, 3772–3795 (2007).

    Article  Google Scholar 

  49. C. Spötl and T. W. Vennemann, “Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals,” Rap. Comm. Mass Spectrom. 17, 1004–1006 (2003).

    Article  Google Scholar 

  50. Statistical Treatment of Data on Environmental Isotopes in Precipitations Techn. Rep. Ser. No. 331 (Int. Atomic Energy Agency, Vienna, 1992).

  51. L. Tieszen, “Natural variations in the carbon isotope values of plants: implications for archaeology, ecology and paleoecology,” J. Archaeol. Sci. 18, 227–248 (1991).

    Article  Google Scholar 

  52. T. Vogt, “Cryogenic physicochemical precipitations: iron, silica, calcium carbonate,” Permafr. Perigl. Proc. 1, 283–293 (1991).

    Article  Google Scholar 

  53. D. Williams and J. Ehleringer, “Carbon isotope discrimination in three semiarid woodland species along a monsoon gradient,” Oecologia 106, 455–460 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Golubtsov.

Additional information

Original Russian Text © V.A. Golubtsov, A.A. Cherkashina, K.E. Pustovoytov, K. Stahr, 2014, published in Pochvovedenie, 2014, No. 10, pp. 1215–1227.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubtsov, V.A., Cherkashina, A.A., Pustovoytov, K.E. et al. Stable carbon and oxygen isotopes in pedogenic carbonate coatings of chernozems in the Southern Cis-Baikalia as indicators of local environmental changes. Eurasian Soil Sc. 47, 1015–1026 (2014). https://doi.org/10.1134/S1064229314100032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229314100032

Keywords

Navigation