Skip to main content
Log in

Modern approaches to remediation of heavy metal polluted soils: A review

  • Degrdation, Rehabiltation, and Conservation of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The main principles and approaches to remediation of in situ polluted soils aimed at the removal or control of heavy metals (washing, stabilization, phytoremediation, and natural restoration) are analyzed. The prospects of gentle methods of stabilization oriented at the reduction of the mobility and biological availability of heavy metals due to the processes of adsorption, ionic exchange, and precipitation are emphasized. The use of sorbents and the traditional application of liming and phosphates to fix metal pollutants in soils is considered. The necessary conditions for successful soil remediation are the assessment of its economic efficiency, the analysis of the ecological risks, and confirming the achievement of the planned purposes related to the content of available metals in the soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrences

  1. Yu. V. Alekseev, Heavy Metals in Soils and Plants (VO “Agropromizdat”, Leningrad, 1987) [in Russian].

    Google Scholar 

  2. Biological Remediation and Monitoring of Industry-Disturbed Lands, compiled by N. V. Lukina, T. S. Chibrik, M. A. Glazyrina, and E. I. Filimonov (Yekaterinburg, 2008) [in Russian].

    Google Scholar 

  3. Great Soviet Encyclopedia (Sovetskaya Entsikloped., Moscow, 1969–1978) [in Russian].

  4. Yu. N. Vodyanitskii, “The role of iron in the fixation of heavy metals and metalloids in soils: a review of publications,” Eur. Soil Sci. 43(5), 519–532 (2010).

    Google Scholar 

  5. Yu. N. Vodyanitskii, D. V. Ladonin, and A. T. Savichev, Soil Contamination with Heavy Metals (Moscow, 2012) [in Russian].

    Google Scholar 

  6. E. L. Vorobeichik, O. F. Sadykov, and M. G. Farafontov, Ecological Norming of Technogenic Pollution of Terrestrial Ecosystems (Local Level) (UIF “Nauka”, Yekaterinburg, 1994) [in Russian].

    Google Scholar 

  7. I. N. Gogotov, S. V. Belonozhkin, R. S. Khodakov, and A. N. Shkidchenko, “Biosurfactants: producers, properties, and practical application,” Mater. 3rd Intern. Conf. International Cooperation in Biotechnologies: Expectations and Reality (ITs “Bioresursy i ekologiya,” Pushchino, 2006), pp. 104–111 [in Russian].

    Google Scholar 

  8. G. A. Evdokimova, Ecological and Microbiological Basics of Soil Protection in the Extreme North (Izd. KNTs RAN, Apatity, 1995) [in Russian].

    Google Scholar 

  9. G. A. Evdokimova, G. V. Kalabin, and N. P. Mozgova, “Contents and toxicity of heavy metals in soils of the zone affected by aerial emissions from the Severonikel enterprise,” Eur. Soil Sci. 44(2), 237–244 (2011).

    Google Scholar 

  10. V. S. Egorov, D. D. Gosse, and A. V. Kurakov, “The effect of sorbents on the agrochemical and microbiological properties of a soddy-podzolic soil contaminated with lead and its uptake by plants,” Agrokhimiya, No. 9, 62–69 (2005).

    Google Scholar 

  11. A. Zaid, H. G. Hughes, E. Porceddu, and F. Nicholas, Glossary of Biotechnology for Food and Agriculture (FAO Res. Techn. Paper 9) (FAO, Rome, 2001).

    Google Scholar 

  12. A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants (CRC Press, Boca Raton, USA, 1985).

    Google Scholar 

  13. L. P. Kapel’kina, “Technological aspects of the rehabilitation of disturbed landscapes of the North,” in Development of the North and Reclamation Problems Materials of the Third Intern. Conf., (Syktyvkar, 1996), pp. 54–56 [in Russian].

    Google Scholar 

  14. L. P. Kapel’kina, Ecological Aspects of the Optimization of Technogenic Landscapes (Nauka, St. Petersburg, 1993) [in Russian].

    Google Scholar 

  15. L. P. Kapel’kina and L. A. Kazakov, “Forest reclamation of disturbed lands in the subpolar region,” Lesn. Khoz., No. 2, 27–29 (1989).

    Google Scholar 

  16. G. M. Kashulina, Aerotchnogenic Transformation of Soils in the European Subarctic Region (Izd. KNTs RAN, Apatity, 2002) [in Russian].

    Google Scholar 

  17. G. N. Koptsik, S. V. Koptsik, S. Yu. Livantsova, and I. E. Smirnova, “Remediation of Soils contaminated with heavy metals via their in situ washing,” Ekolog. Vestn. Sev. Kavkaza 6(2), 26–30 (2010).

    Google Scholar 

  18. G. N. Koptsik, S. V. Koptsik, N. V. Lukina, L. G. Isaeva, I. V. Ermakov, I. E. Smirnova, S. Yu. Livantsova, “Approbation of the CLEANSOIL technology to remediate the soils contaminated with heavy metals.” in Ecological Problems of Northern Regions and Their Solutions Mater. All-Russia Conf. (Apatity, 2008), Part 2, pp. 57–60 [in Russian].

    Google Scholar 

  19. G. N. Koptsik, S. V. Koptsik, and I. E. Smirnova, “Efficiency of remediation of technogenic barrens near the Pechenganikel smelter in the Kola subarctic,” Pochvovedenie, No. 10, 1263–1273 (2013) [in Russian].

    Google Scholar 

  20. G. N. Koptsik, N. P. Nedbaev, S. V. Koptsik, and I. N. Pavlyuk, “Heavy metal pollution of forest soils by atmospheric emissions of Pechenganikel smelter,” Eur. Soil Sci. 31(8), 896–903 (1998).

    Google Scholar 

  21. V. A. Korolev, Soil Purification (MAIK “Nauka/Interperiodika”, Moscow, 2001) [in Russian].

    Google Scholar 

  22. V. V. Kryuchkov, “Reclamation of disturbed lands in the North,” Priroda, No. 7, 68–77 (1985).

    Google Scholar 

  23. L. A. Lebedeva, S. N. Lebedev, N. L. Edemskaya, and G. A. Grafskaya, “The effect of liming and organic fertilizers on the cadmium content of plants,” Agrokhimiya, No. 10, 45–51 (1997).

    Google Scholar 

  24. Forest Ecosystems and Air Pollution, Ed. by V. A. Alekseev (Nauka, Leningrad, 1990) [in Russian].

    Google Scholar 

  25. G. I. Makhonina, Ecological Aspects of Soil Formation in Technogenic Ecosystems of the Urals (Izd. Ural’sk. Gos. Univ., Yekaterinburg, 2003) [in Russian].

    Google Scholar 

  26. G. V. Motuzova, Soil Tolerance toward Chemical Impacts (Izd. Mosk. Gos. Univ., Moscow, 2000) [in Russian].

    Google Scholar 

  27. A. N. Nebol’sin and Z. P. Nebol’sina, Soil Liming (the Results of 50-year-long Field Experiments) (NIISKh Rossel’khozakademii, St. Petersburg, 2010) [in Russian].

    Google Scholar 

  28. A. N. Nebol’sin and Z. P. Nebol’sina, Theoretical Bases of Soil Liming (LNIISKh, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  29. V. V. Nikonov, N. V. Lukina, L. G. Isaeva, T. T. Gorbacheva, E. A. Belova, “Rehabilitation of the territory disturbed by air pollution from the copper-nickel plants in the Kola Peninsula,” in Innovative Potential of the Kola Peninsula (Izd. KNTs RAN, Apatity, 2005), Vol. 2, pp. 284–288 [in Russian].

    Google Scholar 

  30. A. I. Obukhov, “Ecological consequences of soil pollution with heavy metals and mitigration measures,” in The Behavior of Pollutants in Soils and Landscapes (Pushchino, 1990), pp. 52–59 [in Russian].

    Google Scholar 

  31. M. M. Ovcharenko, N. A. Shil’nikova, D. K. Polyakova, G. A. Grafskaya, A. V. Ivanov, N. K. Sopil’nyak, “The effect of liming and soil acidity on the uptake of heavy metals by plants,” Agrokhimiya, No. 1, 74–84 (1996).

    Google Scholar 

  32. I. V. Perminova, “Humic substances — a challenge to chemists of the 21st century,” Khimiya Zhizn’, No. 1, 50–55 (2008).

    Google Scholar 

  33. D. L. Pinskii, Ion-Exchange Processes in Soils (Pushchino, 1997) [in Russian].

    Google Scholar 

  34. L. S. Sadovnikova and M. V. Kasatikov, “The effect of sewage sludge and lime on the mobility of heavy metal compounds in a soddy-podzolic soil,” Agrokhimiya, No. 6, 81–88 (1995).

    Google Scholar 

  35. I. E. Smirnova, I. V. Ermakov, Ya. V. Shevchenko, and G. N. Koptsik, “Assessment of the possibility of using sorbents to reclaim contaminated soils in static adsorption experiments,” in Modern Problems of Soil Pollution Mater. 2nd Intern. Conf. (Moscow, 2007), Vol. 2, pp. 323–327 [in Russian].

    Google Scholar 

  36. W. H. Smith, Air Pollution and Forests: Interactions between Air Contaminants and Forest Ecosystems (Springer, New York, 1981).

    Google Scholar 

  37. T. A. Sokolova, Chemical Bases of Reclamation of Acid Soils (Izd. Mosk. Gos. Univ., Moscow, 1993) [in Russian].

    Google Scholar 

  38. Chemistry of Heavy Metals, Arsenic, and Molybdenum in Soils, ed. by N. G. Zyrin and L. K. Sadovnikova (Izd. Mosk. Gos. Univ., Moscow, 1985) [in Russian].

    Google Scholar 

  39. V. F. Tsvetkov and E. A. Cherkizov, “An experience in forest reclamation of land in the impact zone of industrial emissions in the Kola Peninsula,” in Impact of Industrial Enterprises on the Environment (Nauka, Moscow, 1987), pp. 112–119 [in Russian].

    Google Scholar 

  40. A. S. Yakovlev, I. O. Plekhanova, S. V. Kudryashov, and R. A. Aimaletdinov, “Assessment and regulation of the ecological state of soils in the impact zone of mining and metallurgical enterprises of Norilsk Nickel company,” Eur. Soil Sci. 401(6), 648–659 (2008).

    Google Scholar 

  41. O. Abollino, A. Giacomino, M. Malandrino, and E. Mentasti, “Interaction of metal ions with montmorillonite and vermiculite,” Appl. Clay Sci. 38, 227–236 (2008).

    Google Scholar 

  42. O. Abollino, A. Giacomino, M. Malandrino, and E. Mentasti, “The efficiency of vermiculite as natural sorbent for heavy metals. application to a contaminated soil,” Water Air Soil Pollut. 181, 149–160 (2007).

    Google Scholar 

  43. D. C. Adriano, W. W. Wenzel, J. Vangronsveld, and N. S. Bolan, “Role of assisted natural remediation in environmental cleanup,” Geoderma 122, 121–142 (2004).

    Google Scholar 

  44. S. Al-Asheh and Z. Duvnjak, “Binary metal sorption by pine bark: study of equilibria and mechanisms,” Sep. Sci. Technol. 33, 1303–1329 (1998).

    Google Scholar 

  45. S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian, “A review of potentially low costs sorbents for heavy metals,” Water Res. 33(11), 2469–2479 (1999).

    Google Scholar 

  46. I. M. Banat, R. S. Makkar, and S. S. Cameotra, “Potential commercial applications of microbial surfactants,” Appl. Microbiol. Biotechnol. 53, 495–508 (2000).

    Google Scholar 

  47. N. T. Basta and S. L. McGowen, “Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil,” Environ. Pollut. 127, 73–82 (2004).

    Google Scholar 

  48. L. Beesley, E. Moreno-Jiménez, J. L. Gomez-Eyles, E. Harris, B. Robinson, T. Sizmur, “A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils,” Environ. Pollut. 159, 3269–3282 (2011).

    Google Scholar 

  49. W. Berti and S. Cunningham, “Phytostabilization of metals,” in Phytoremediation of Toxic Metals: Using Plants to Clean-Up the Environment, ed. by I. Raskin and B. D. Ensley (John Wiley & Sons Inc., New York, 2000), pp. 71–88.

    Google Scholar 

  50. M. J. Blaylock and J. W. Huang, “Phytoextraction of metals,” in Phytoremediation of Toxic Metals: Using Plants to Clean-Up the Environment, ed. by I. Raskin and B. D. Ensley (John Wiley & Sons Inc., New York, 2000), pp. 53–70.

    Google Scholar 

  51. N. S. Bolan, D. C. Adriano, and R. Naidu, “Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system,” Rev. Environ. Contam. Toxicol. 177, 1–44 (2003).

    Google Scholar 

  52. N. S. Bolan and V. P. Duraisamy, “Role of inorganic and organic soil amendments on immobilization and phytoavailability of heavy metals: a review involving specific case studies,” Aust. J. Soil Res. 41, 533–555 (2003).

    Google Scholar 

  53. P. K. Chaturvedi, C. S. Seth, and V. Misra, “Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite),” Chemosphere 64, 1109–1114 (2006).

    Google Scholar 

  54. M. Chen, L. Q. Ma, S. P. Singh, R. X. Cao, R. Melamed, “Field demonstration of in situ immobilization of soil Pb using P amendments,” Adv. Environ. Res. 8, 93–102 (2003).

    Google Scholar 

  55. X. Chen, J. V. Wright, J. L. Conca, and L. M. Peurrung, “Evaluation of heavy metal remediation using mineral apatite,” Water Air Soil Pollut. 98, 57–78 (1997).

    Google Scholar 

  56. Y. W. Chiang, R. M. Santos, K. Ghyselbrecht, V. Cap- puyns, J. A. Martens, R. Swennen, T. Van Gerven, B. Meesschaert, “Strategic selection of an optimal sorbent mixture for in-situ remediation of heavy metal contaminated sediments: framework and case study,” J. Environ. Manag. 105, 1–11 (2012).

    Google Scholar 

  57. N. Chubar, J. R. Carvalho, and M. J. N. Correia, “Cork biomass as biosorbent for Cu(II), Zn(II) and Ni(II),” Colloids Surf., A 230, 57 (2004).

    Google Scholar 

  58. A. B. Cundy, L. Hopkinson, and R. L. D. Whitby, “Use of iron-based technologies in contaminated land and groundwater remediation: a review,” Sci. Total Environ. 400, 42–51 (2008).

    Google Scholar 

  59. S. D. Cunningham and D. W. Ow, “Promises and prospects of phytoremediation,” Plant Physiol. 110, 715–719 (1996).

    Google Scholar 

  60. G. Dermont, M. Bergeron, G. Mercier, and M. Richer-Laflèche, “Soil washing for metal removal: a review of physical/chemical technologies and field applications,” J. Hazard. Mater. 152, 1–31 (2008).

    Google Scholar 

  61. J. Derome and A. Saarsalmi, “The effect of liming and correction fertilisation on heavy metal and macronutrient concentrations in soil solution in heavy-metal polluted Scots pine stands,” Environ. Pollut. 104, 249–259 (1999).

    Google Scholar 

  62. Emerging Technologies for the Remediation of Metals in Soils. In Situ Stabilization / In-Place Inactivation (Interstate Technology and Regulatory Cooperation Work Group, Metals in Soils Work Team, 1997).

  63. M. Farrell, W. T. Perkins, P. J. Hobbs, G. W. Griffith, D. L. Jones, “Migration of heavy metals in soil as influenced by compost amendments,” Environ. Pollut. 158, 55–64 (2010).

    Google Scholar 

  64. H. Felix, “Field trials for in situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants,” Z. Pflanzen. Bodenk. 160(4), 525–529 (1997).

    Google Scholar 

  65. Y. Feng, J.-L. Gong, G.-M. Zeng, Q.-Y. Niu, H.-Y. Zhang, C.-G. Niu, J-H. Deng, M. Yan, “Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents,” Chem. Eng. J. 162, 487–494 (2010).

    Google Scholar 

  66. M. Furukawa and S. Tokunaga, “Extraction of heavy metals from a contaminated soil using citrate-enhancing extraction by pH control and ultrasound application,” J. Env. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Engin., 39(3), 627–638 (2004).

    Google Scholar 

  67. D. J. Glass, “Economic potential of phytoremediation,” in Phytoremediation of Toxic Metals: Using Plants to Clean-Up the Environment, ed. by I. Raskin and B. D. Ensley (John Wiley & Sons Inc., New York, 2000), pp. 15–32.

    Google Scholar 

  68. R. González-Nu-ñez, M. D. Alba, M. M. Orta, M. Vidal, A. Rigol, “Remediation of metal-contaminated soils with the addition of materials-part II: leaching tests to evaluate the efficiency of materials in the remediation of contaminated soils,” Chemosphere 87, 829–837 (2012).

    Google Scholar 

  69. L. K. Grønflaten, L. Amundsen, J. Frank, and E. Steinnes, “Influence of liming and vitality fertilization on trace element concentrations in Scots pine forest soil and plants,” Forest Ecol. Manag. 213, 261–272 (2005).

    Google Scholar 

  70. G. Guo, Q. Zhou, and L. Q. Ma, “Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review,” Environ. Monit. Assess. 116, 513–528 (2006).

    Google Scholar 

  71. Handbook of Ecotoxicology, ed. by D. J. Hoffman, B. A. Rattner, G. A. Burton, and J. Cairns (CRC Press, Boca Raton, 2003).

    Google Scholar 

  72. J. Hargreaves, A. Lock, P. Beckett, G. Spiers, B. Tisch, L. Lanteigne, T. Posadowski, M. Soenens, “Suitability of an organic residual cover on tailings for bioenergy crop production: a preliminary assessment,” Can. J. Soil. Sci. 92, 203–211 (2012).

    Google Scholar 

  73. Heavy Metals in Soils ed. by B. J. Alloway (Wiley & Sons, New York, 1990).

    Google Scholar 

  74. Y. S. Ho, J. F. Porter, and G. McKay, “Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems,” Water Air Soil Pollut. 141, 1–33 (2002).

    Google Scholar 

  75. P. K. A. Hong, C. Li, S. K. Banerji, and T. Regmi, “Extraction, recovery, and biostability of EDTA for remediation of heavy metal-contaminated soil,” J. Soil Contam. 8(1), 81–103 (1999).

    Google Scholar 

  76. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, “Heavy metal removal from water/wastewater by nanosized metal oxides: a review,” J. Hazard. Mater. 211–212, 317–331 (2012).

    Google Scholar 

  77. A. S. Hursthouse, “The relevance of speciation in the remediation of soils and sediments contaminated by metallic elements-an overview and examples from central Scotland, UK,” J. Environ. Monit. 3(1), 49–60 (2001).

    Google Scholar 

  78. V. Illera, F. Garrido, S. Serrano, and M. T. Garsia-Gonzalez, “Immobilization of the heavy metals Cd, Cu and Pb in an acid soil amended with gypsum- and lime-rich industrial byproducts,” Eur. J. Soil Sci. 55, 135–145 (2004).

    Google Scholar 

  79. M. Isoyama and Sh.-I. Wada, “Remediation of Pbcontaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophanic soil,” J. Hazard. Mater 143, 636–642 (2007).

    Google Scholar 

  80. L. Jean, F. Bordas, and J.-C. Bollinger, “Chromium and nickel mobilization from a contaminated soil using chelants,” Environ. Pollut. 147, 729–736 (2007).

    Google Scholar 

  81. A. A. Kamnev and D. van der Lelie, “Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation,” Biosci. Rep. 20(4), 239–258 (2000).

    Google Scholar 

  82. O. Kiikkilä, “Heavy-metal pollution and remediation of forest soil around the Harjavalta Cu-Ni smelter, in SW Finland,” Silva Fennica 37 (3), 399–415 (2003).

    Google Scholar 

  83. M. G. Klimantavièiûtë, D. Virbalytë, V. Pakðtas, R. Juðkënas, and A. Pigaga, “Interaction of heavy metal ions with cement kiln dust,” Ekologija 1, 31 (2005).

    Google Scholar 

  84. M. Komárek, A. Vaněk, and V. Ettler, “Chemical stabilization of metals and arsenic in contaminated soils using oxides — a review,” Environ. Pollut. 172, 9–22 (2013).

    Google Scholar 

  85. S. Koptsik, G. Koptsik, S. Livantsova, L. Eruslankina, T. Zhmelkova, Zh. Vologdina, “Heavy metals in soils near the nickel smelter: chemistry, spatial variation, and impacts on plant diversity,” J. Environ. Monit. 5, 441–450 (2003).

    Google Scholar 

  86. M. V. Kozlov and E. L. Zvereva, “Industrial barrens: extreme habitats created by non-ferrous metallurgy,” Rev. Environ. Sci. Biotechnol. 6, 231–259 (2007).

    Google Scholar 

  87. R. Kucharski, A. Sas-Nowosielska, E. Malkowski, J. Japenga, J. M. Kuperberg, M. Pogrzeba, J. Krzyzak, “The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland,” Plant Soil 273, 291–305 (2005).

    Google Scholar 

  88. P. B. A. N. Kumar, V. Dushenkov, H. Motto, and I. Raskin, “Phytoextraction: the use of plants to remove heavy metals from soils,” Environ. Sci. Technol. 29, 1232–1238 (1995).

    Google Scholar 

  89. M. Kyncl, H. Pavolová, and K. Kysel’ová, “Using untraditional sorbents for sorption of certain heavy metals from waste water,” GeoSci. Engin. LIV (2), 26–31 (2008).

    Google Scholar 

  90. S. Kuo, M. S. Lai, and C. W. Lin, “Influence of solution acidity and CaCl2 Concentration on the removal of heavy metals from metal-contaminated rice soils,” Environ. Pollut. 144, 918–925 (2006).

    Google Scholar 

  91. M. M. Lasat, “Phytoextraction of toxic metals: a review of biological mechanisms,” J. Environ. Qual. 31(1), 109–120 (2002).

    Google Scholar 

  92. M.-G. Lee, J.-K. Cheon, and S.-K. Kam, “Heavy metal adsorption characteristics of zeolite synthesized from fly ash,” J. Ind. Eng. Chem 9(2), 174–180 (2003).

    Google Scholar 

  93. C. Lin, M. W. Clark, D. M. McConchie, G. Lancaster, N. Ward, “Effects of BauxsolTM on the immobilisation of soluble acid and environmentally significant metals in acid sulfate soils,” Aust. J. Soil Res. 40, 805–815 (2002).

    Google Scholar 

  94. W. L. Lindsay, Chemical Equilibria in Soil (John Wiley and Sons, New-York, Chichester, Brisbane, Toronto, 1979).

    Google Scholar 

  95. E. Lombi and R. E. Hamon, “Remediation of polluted soils,” Encyclopedia of Soils in the Environment, ed. by D. Hillel (Elsevier Ltd, Oxford, 2005), pp. 379–385.

    Google Scholar 

  96. B. Lothenbach, G. Furrer, and R. Schulin, “Immobilization of heavy metals by polynuclear aluminium and montmorillonite compounds,” Environ. Sci. Technol. 31, 1452–1462 (1997).

    Google Scholar 

  97. G. Maddocks, C. Lin, and D. McConchie, “Effects of BauxsolTM and biosolids on soil conditions of acidgenerating mine spoil for plant growth,” Environ. Pollut. 127, 157–167 (2004).

    Google Scholar 

  98. E. Madejón, P. Madejon, P. Burgos, A. Pérez de Mora, F. Cabrera, “Trace elements, pH and organic matter evolution in contaminated soils under assisted natural remediation: a 4-year field study,” J. Hazard. Mater. 162, 931–938 (2009).

    Google Scholar 

  99. F. Madrid, E. Díaz-Barrientos, M. C. Florido, and L. Madrid, “Inorganic amendments to decrease metal availability in soils of recreational urban areas: limitations to their efficiency and possible drawbacks,” Water Air Soil Pollut. 192(1), 117–125 (2012).

    Google Scholar 

  100. E. Mälkönen, J. Derome, H. Fritze, H.-S. Helmisaari, M. Kukkola, M. Kytö, A. Saarsalmi, M. Salemaa, “Compensatory fertilization of Scots pine stands polluted by heavy metals,” Nutr. Cycl. Agroecosyst. 55, 239–268 (1999).

    Google Scholar 

  101. G. Mancini, A. Polettini, R. Pomi, and M. Bruno, “Effects of metals fractionation on chelant-assisted soil flushing,” Proc. Int. Conf. BOSICON (Rome, 2009), pp. 1–14.

    Google Scholar 

  102. M. Marinkovski, L. Markovska, and V. Meshko, “Equilibrium studies of Pb(II), Zn(II) and Cd(II) ions onto granular activated carbon and natural zeolite,” in Chemicals as Intentional and Accidental Global Environmental Threats, ed. by L. Simeonov and E. Chirila (Springer, 2006), pp. 477–486.

    Google Scholar 

  103. E. Mavropoulos, A. M. Rossi, A. M. Costa, C. A. C. Perez, J. C. Moreira, and M. Saldanha, “Studies on the mechanisms of lead immobilization by hydroxyapatite,” Environ. Sci. Technol. 36, 1625–1629 (2002).

    Google Scholar 

  104. N. Meunier, J. F. Blais, and R. D. Tyagi, “Selection of a natural sorbent to remove toxic metals from acidic leachate produced during soil decontamination,” Hydrometallurgy 67, 19–30 (2002).

    Google Scholar 

  105. L. Montanarella, “The EU thematic strategy on soil protection,” in First European Summer School on Soil Survey, ed. by R. J. A. Jones, L. Montanarella, and S.-K. Selvaradjou, (ESB, IES, JRC-EU, Ispra, 2003), pp. 275–288.

    Google Scholar 

  106. L. Montanarella, Trends in Land Degradation in Europe (Arusha, JRC-EU, 2006) [eusoils.jrc.ec. europa, eu].

    Google Scholar 

  107. C. N. Mulligan, R. N. Yong, and B. F. Gibbs, “Remediation technologies for metal-contaminated soils and groundwater: an evaluation,” Engin. Geol. 60, 193–207 (2001).

    Google Scholar 

  108. N. C. Munksgaard and B. G. Lottermoser, “Fertilizer amendment of mining-impacted soils from Broken Hill, Australia: fixation or release of contaminants?,” Water Air Soil Pollut. 215(1–4), 373–397 (2011).

    Google Scholar 

  109. J. W. Neilson, J. F. Artiola, and R. M. Maier, “Characterization of lead removal from contaminated soils by nontoxic soil-washing agents,” J. Environ. Qual. 32, 899–908 (2003).

    Google Scholar 

  110. O. I. Nwachukwu and I. D. Pulford, “Comparative effectiveness of selected adsorbant materials as potential amendments for the remediation of lead-, copperand zinc-contaminated soil,” Soil Use Manag. 24(2), 199–207 (2008).

    Google Scholar 

  111. D. O’Carroll, B. Sleep, M. Krol, H. Boparai, C. Kocur, “Nanoscale zero valent iron and bimetallic particles for contaminated site remediation,” Adv. Water Res. 51, 104–122 (2013).

    Google Scholar 

  112. J. Oliva, J. De Pablo, J.-L. Cortina, J. Cama, C. Ayora, “Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite IITM: column experiments,” J. Hazard. Mater. 194, 312–323 (2011).

    Google Scholar 

  113. P. K. Padmavathiamma and L. Y. Li, “Phytoremediation technology: hyper-accumulation metals in plants,” Water Air Soil Pollut. 184, 105–126 (2007).

    Google Scholar 

  114. J. H. Park, D. Lamb, P. Paneerselvam, G. Choppala, N. Bolan, J.-W. Chungd, “Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils,” J. Hazard. Mater. 185, 549–574 (2011).

    Google Scholar 

  115. M. N. V. Prasad and H. M. O. Freitas, “Metal hyperaccumulation in plants — biodiversity prospecting for phytoremediation technology,” Electr. J. Biotechnol. 6(3), 285–321 (2003).

    Google Scholar 

  116. X. Querol, A. Alastuey, N. Moreno, E. Alvarez-Ayuso, A. García-Sánchez, J. Cama, C. Ayora, M. Simón, “Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash,” Chemosphere 62((2)), 171–80 (2006).

    Google Scholar 

  117. S. Raicevic, T. Kaludjerovic-Radoicic, and A. I. Zouboulis, “In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification,” J. Hazard. Mater. 117(1), 41–53 (2005).

    Google Scholar 

  118. M. Rao, A. V. Parwate, and A. G. Bhole, “Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash,” Waste Manag. 22(7), 821–830 (2002).

    Google Scholar 

  119. Recent Developments for in Situ Treatments of Metal Contaminated Soils (US EPA, Office of Solid Waste and Emergency Response, Technology Innovation Office, Washington DC, 2004).

  120. Regreening Greater Sudbury. Annual Report 2008, Land Reclamation Program, 30th Anniv. Ed., 1978–2008 (VETAC, 2008).

  121. B. H. Robinson, R. R. Brooks, A. W. Howes, J. H. Kirkman, P. E. H. Gregg, “The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining,” J. Geochem. Explor. 60, 115–126 (1997).

    Google Scholar 

  122. B. Robinson, J.-E. Fernández, P. Madejón, T. Marañón, J. M. Murillo, S. Green, B. Clothier, “Phytoextraction: an assessment of biogeochemical and economic viability,” Plant Soil 249, 117–125 (2003).

    Google Scholar 

  123. L. Santona, P. Castaldi, and P. Melis, “Evaluation of the interaction mechanisms between red muds and heavy metals,” J. Hazard. Mater. 136(2), 324–329 (2006).

    Google Scholar 

  124. J. Scullion, “Remediating polluted soils,” Naturwis-senschaften 93, 51–65 (2006).

    Google Scholar 

  125. T. K. Sen, S. P. Mahajan, and K. C. Khilar, “Adsorption of Cu2+ and Ni2+ on iron oxide and kaolin and its importance on Ni2+ transport in porous media,” Colloid. Surf. A: Physicochem. Engin. Aspects 211, 91–102 (2002).

    Google Scholar 

  126. W. Shi, H. Shao, H. Li, M. Shao, S. Du, “Progress in the remediation of hazardous heavy metal-polluted soils by natural Zeolite,” J. Hazard. Mater. 170, 1–6 (2009).

    Google Scholar 

  127. G. Siebielec, R. L. Chaney, and U. Kukier, “Liming to remediate Ni contaminated soils with diverse properties and a wide range of Ni concentration,” Plant Soil 299, 117–130 (2007).

    Google Scholar 

  128. SUMATECS. Sustainable Management of Trace Element Contaminated Soils-Development of a Decision Tool System and Its Evaluation for Practical Application. Final Research Report, ed. by M. Puschenreiter (Univ. Bodenkultur, Vienna, 2008).

    Google Scholar 

  129. G. Tyler and T. Olsson, “Plant uptake of major and minor mineral elements as influenced by soil acidity and liming,” Plant Soil 230, 307–321 (2001).

    Google Scholar 

  130. T. K. Udeigwe, P. N. Eze, J. M. Teboh, and M. H. Stietiya, “Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality,” Environ. Intern. 37, 258–267 (2011).

    Google Scholar 

  131. M. Udovic and D. Lestan, “EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: remediation efficiency and soil impact,” Chemosphere 88, 718–724 (2012).

    Google Scholar 

  132. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and. Underground Storage Tank Sites, U.S. EPA OSWER Directive 9200 (Washington DC, 1999).

  133. M. W. Wan, I. G. Petrisor, H. T. Lai, D. Kim, T. F. Yen, “Copper adsorption through chitosan immobilized on sand to demonstrate the feasibility for in situ soil decontamination,” Carbohydr. Polymers 55, 249 (2004).

    Google Scholar 

  134. K. Winterhalder, “Environmental degradation and rehabilitation of landscape around sudbury, a major mining and smelting area,” Environ. Reviews 4, 185–224 (1996).

    Google Scholar 

  135. S. Yuan, Z. Xi, Y. Jiang, J. Wan, C. Wu, Z. Zheng, X. Lu, “Desorption of copper and cadmium from soils enhanced by organic acids,” Chemosphere 68, 1289–1297 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Koptsik.

Additional information

Original Russian Text © G.N. Koptsik, 2014, published in Pochvovedenie, 2014, No. 7, pp. 851–868.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koptsik, G.N. Modern approaches to remediation of heavy metal polluted soils: A review. Eurasian Soil Sc. 47, 707–722 (2014). https://doi.org/10.1134/S1064229314070072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229314070072

Keywords

Navigation