Skip to main content
Log in

Methane emission from mires of the West Siberian taiga

  • Soil Physics
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

In the summer-autumn seasons of 2007–2011, the methane emission from typical mire landscapes of Western Siberia was studied using the static chamber method. The lowest methane flux turned out to be characteristic of the ryams (pine-dwarf shrub-sphagnum associations) and the ridges of the ridge-hollow complexes, as well as of the wetland lakes in the northern and middle taiga (the medians are within the range of 0.1–0.5 mg C-CH4/m2 h). Values that are 10 times higher are typical for the oligotrophic hollows, fens, peat mats, and poor fens in different subzones (the medians are 2 to 7 mg C-CH4/m2 h). The maximal values of the methane flux from the wetland lakes of the southern taiga are 17.98 mg C-CH4/m2 h. Based on the data obtained by the authors, along with the previously published ones, the regional methane fluxes from the taiga mires were calculated: 2.22 Mt C-CH4/m2 per year, or about 80% of the total methane flux from the West Siberian mires. The estimates of the CH4 regional flux obtained by other researchers are discussed; the main source of the estimation uncertainty is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Glagolev, “On the inverse problem of determining surface density of gas flux from soil,” in Environmental Dynamics and Global Climate Changes, Vol. 1(1), 17–36 (2010).

    Google Scholar 

  2. M. V. Glagolev, Methane Emission from Mire Ecosystems of Western Siberia, Cand. Sci. (Biol.) Diss. (Moscow, 2010) [in Russian].

    Google Scholar 

  3. M. V. Glagolev, A. F. Sabrekov, and V. S. Kazantsev, Physical Chemistry and Biology of Peat. Methods for Measuring Gas Exchange at the Soil-Atmosphere Interface (Izd. TGPU, Tomsk, 2010) [in Russian].

    Google Scholar 

  4. E. A. Golovatskaya and E. V. Porokhina, Botany with Fundamentals of Phytocenology. Biological Productivity of Phytocenoses (Izd. TGPU, Tomsk, 2005) [in Russian].

    Google Scholar 

  5. G. A. Zavarzin, “Microbial cycle of methane in cold environments,” Priroda, No. 6, 3–14 (1995).

    Google Scholar 

  6. V. S. Kazantsev and M. V. Glagolev, “Methane emission in the northern taiga subzone: standard model Aa3,” in Environmental Dynamics and Global Climate Changes Proc. Yugra State Univ. (Izd. NGU, Novosibirsk, 2008), No. 1, 200–207 [in Russian].

    Google Scholar 

  7. I. E. Kleptsova, M. V. Glagolev, I. V. Filippov, and S. S. Maksyutov, “Methane emission from ridged mires of the middle taiga in West Siberia,” in Environmental Dynamics and Global Climate Changes, Vol. 1(1), 56–64 (2010).

    Google Scholar 

  8. I. E. Kleptsova, M. V. Glagolev, I. V. Filippov, and S. S. Maksyutov, “Methane emission from fens of the southern taiga in West Siberia,” in Bio-, Geo-, and Anthroposhere Interactions as Reflected in Soils and the Soil Cover (TML-Press, Tomsk, 2010), Vol. 2, pp. 81–84 [in Russian].

    Google Scholar 

  9. V. N. Kudeyarov, “The role of soils in the carbon cycle,” Eur. Soil Sci. 38(8), 808–815 (2005).

    Google Scholar 

  10. A. V. Naumov, “Mires as a source of greenhouse gases in West Siberia,” Proc. 2nd Intern. Conf. Emission and Sink of Greenhouse Gases in Northern Eurasia (Pushchino, 2003), pp. 86–87 [in Russian].

    Google Scholar 

  11. V. V. Novikov and A. V. Rusakov, “Release and absorption of greenhouse gases in ameliorated peat soils of the Rostov Lowland,” Eur. Soil Sci. 38(7), 745–751 (2005).

    Google Scholar 

  12. V. V. Novikov, A. L. Stepanov, A. I. Pozdnyakov, and E. V. Lebedeva, “Seasonal dynamics of CO2, CH4, N2O, and NO emissions from peat soils of the Yakhroma River floodplain,” Eur. Soil Sci. 37(7), 755–761 (2004).

    Google Scholar 

  13. A. I. Pozdnyakov, E. V. Shein, N. S. Panikov, B. A. Devin, T. V. Nazarova, “Localization of greenhouse gases in peat deposits of Western Siberia,” Eur. Soil Sci. 36(6), 624–627 (2003).

    Google Scholar 

  14. L. Z. Rumshiskii, Mathematical Processing of Experimental Results (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  15. M. V. Semenov, I. K. Kravchenko, V. M. Semenov, T. V. Kuznetsova, L. E. Dulov, S. N. Udal’tsov, A. L. Stepanov, “Carbon dioxide, methane, and nitrous oxide fluxes in soil catena across the right bank of the Oka River (Moscow oblast),” Eur. Soil Sci. 43(5), 541–549 (2010).

    Article  Google Scholar 

  16. D. D. Baldocchi, B. B. Hicks, and T. P. Meyers, “Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods,” Ecology 69, 1331–1340 (1988).

    Article  Google Scholar 

  17. R. D. Barber and J. G. Ferry, “Methanogenesis,” in Encyclopedia of Life Sciences (Nature Publ. Group, 2001).

    Google Scholar 

  18. K. B. Bartlett and R. C. Harriss, “Review and assessment of methane emissions from wetlands,” Chemosphere 26(1–4), 261–320 (1993).

    Article  Google Scholar 

  19. P. Casper, O. C. Chan, A. L. S. Furtado, and D. Adams, “Methane in an acidic bog lake: the influence of peat in the catchment on the biogeochemistry of methane,” Aquat. Sci 65(1), 36–46 (2003).

    Article  Google Scholar 

  20. A. M. Fiore, D. J. Jacob, B. D. Field, D. G. Streets, S. D. Fernandes, and C. Jang, “Linking ozone pollution and climate change: the case for controlling methane,” Geophys. Rev. Lett. 29(19) (2002).

    Google Scholar 

  21. M. V. Glagolev, E. A. Golovatskaya, and N. A. Shnyrev, “Greenhouse gas emission in West Siberia,” Contemporary Problems of Ecology 1(1), 136–146 (2008).

    Google Scholar 

  22. M. Glagolev, L. Inisheva, V. Lebedev, A. Naumov, T. Dement’eva, E. Golovatskaja, V. Erohin, N. Shnyrev, and A. Nozhevnikova, “The emission of CO2 and CH4 in geochemically similar oligotrophic landscapes of West Siberia,” in Proc. 9th Symp. on the Joint Siberian Permafrost Studies between Japan and Russia in 2000, Japan, 23–24 January, 2001) (Kohsoku Printing Center, Sapporo, 2001), pp. 112–119.

    Google Scholar 

  23. M. V. Glagolev, I. E. Kleptsova, I. V. Filippov, V. S. Kazantsev, T. Machida, and S. S. Maksyutov, “Methane emissions from subtaiga mires of Western Siberia: the “standard model” Bc5,” Mosc. Univ. Soil Sci. Bull. 65(2), 86–93 (2010).

    Article  Google Scholar 

  24. M. Glagolev, I. Kleptsova, I. Filippov, S. Maksyutov, and T. Machida, “Regional methane emission from Western Siberia mire landscapes,” Environ. Res. Lett. 6, 045214 (2011).

    Article  Google Scholar 

  25. M. Glagolev, H. Uchiyama, V. Lebedev, M. Utsumi, A. Smagin, O. Glagoleva, V. Erohin, P. Olenev, and A. Nozhevnikova, “Oxidation and plant-mediated transport of methane in West Siberian Bog,” Proc. 8th Symp. on the Joint Siberian Permafrost Studies between Japan and Russia in 1999 (Isebu, Tsukuba, 2000), pp. 143–149.

    Google Scholar 

  26. G. L. Hutchinson and A. R. Mosier, “Improved soil cover method for field measurement of nitrous-oxide fluxes,” Soil Sci. Soc. Am. J. 45, 311–316 (1981).

    Article  Google Scholar 

  27. Intergovernmental Panel on Climate Change, The Scientific Basis, Ed. by J. T. Houghton et al. (Cambridge Univ. Press, New York, 2001).

  28. R. L. Jones and J. A. Pyle, “Observations of CH4 and N2O by the Nimbus 7 SAMS. A comparison with in situ data and two-dimensional numerical model calculations,” J. Geophys. Res., No. 89, 5263–5279 (1984).

    Google Scholar 

  29. H.-S. Kim, S. Maksyutov, M. V. Glagolev, T. Machida, P. K. Patra, K. Sudo, and G. Inoue, “Evaluation of methane emissions from West Siberian wetlands based on inverse modeling,” Environ. Res. Lett. 6(3), 035201 (2011).

    Article  Google Scholar 

  30. O. R. Kotsyurbenko, K.-J. Chin, M. V. Glagolev, S. Stubner, M. V. Simankova, A. N. Nozhevnikova, R. Conrad, “Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian Peat Bog,” Environ. Microbiol. 6(11), 1159–1173 (2004).

    Article  Google Scholar 

  31. S. Maksyutov, G. Inoue, M. Sorokin, T. Nakano, O. Krasnov, N. Kosykh, N. Mironycheva-Tokareva, and S. Vasiliev, “Methane fluxes from wetland in West Siberia during April–October 1998,” Proc. 7th Symp. on the Joint Siberian Permafrost Studies between Russia and Japan in 1998 (Tsukuba, Japan, 1999), pp. 115–124.

    Google Scholar 

  32. E. Matthews and I. Fung, “Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources,” Gl. Biogeochem. Cycles 1(1), 61–86 (1987).

    Article  Google Scholar 

  33. S. E. M. Fletcher, P. P. Tans, L. M. Bruhwiler, J. B. Miller, M. Heimann, “CH4 sources estimated from atmospheric observations of CH4 and 13C/12C isotopic ratios: 1. inverse modeling of source processes,” Gl. Biogeochem. Cycles 18, GB4004 (2004).

    Google Scholar 

  34. A. Peregon, S. Maksyutov, and Y. Yamagata, “An image-based inventory of the spatial structure of West Siberian wetlands,” Environ. Res. Lett., No. 4, 045014 (2009).

    Google Scholar 

  35. M. E. Repo, J. T. Huttunen, A. V. Naumov, A. V. Chichulin, E. D. Lapshina, W. Bleuten, and P. J. Martikainen, “Release of CO2 and CH4 from small wetland lakes in Western Siberia,” Tellus 59, 788–796.

  36. A. F. Sabrekov, M. V. Glagolev, I. V. Filippov, V. S. Kazantsev, E. D. Lapshina, T. Machida, and S. S. Maksyutov, Methane emissions from north and middle taiga mires of Western Siberia: Bc8 standard model (Moscow Univ. Soil Science Bull. 67(1), 45–53 (2012).

    Article  Google Scholar 

  37. A. F. Sabrekov, I. E. Kleptsova, M. V. Glagolev, S. S. Maksyutov, and T. Machida, “Methane emission from oligotrophic hollows of Western Siberia,” Vestn. TPGU, No. 5, 135–143 (2011) http://vestnik.tspu.ru/files/PDF/articles/sabrekov_a._f._135_143_5_107_2011.pdf.

    Google Scholar 

  38. V. M. Stepanenko, E. E. Machul’skaya, M. V. Glagolev, and V. N. Lykossov, “Numerical modeling of methane emissions from lakes in the permafrost zone,” Izv. Atmosph. Ocean. Physics 47(2), 252–264 (2011).

    Article  Google Scholar 

  39. K. M. Walter, L. C. Smith, and F. S. Chapin Iii, “Methane bubbling from northern lakes: present and future contributions to the global methane budget,” Phil. Trans. R. Soc. A 365, 1657–1676 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Sabrekov.

Additional information

Original Russian Text © A.F. Sabrekov, M.V. Glagolev, I.E. Kleptsova, T. Machida, S.S. Maksyutov, 2014, published in Pochvovedenie, 2014, No. 1, pp. 58–70.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabrekov, A.F., Glagolev, M.V., Kleptsova, I.E. et al. Methane emission from mires of the West Siberian taiga. Eurasian Soil Sc. 46, 1182–1193 (2013). https://doi.org/10.1134/S1064229314010098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229314010098

Keywords

Navigation