Skip to main content
Log in

Methane Emission from Palsa Mires in Northeastern European Russia

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Measurement data on methane fluxes in the palsa mire ecosystem at the border of tundra and taiga zones in northeastern European Russia are presented. It was found for the first time that an intense methane flux from the surface of the permafrost mound (palsa) is determined by the spring thawing of the seasonally thawed horizon in the layer of 14–25 cm. During this period, the emission was 4–20 times higher than the summer values. In lichen communities of peat mounds, the CH4 sink prevailed during the summer-autumn period. The total methane flux in different parts of the mire in June–September varied from 0.18 to 16.5 kg CH4/ha. In general, the palsa mire emitted 81 kg CH4/ha per year to the atmosphere. The methane emission from the surface of peat mounds and hollows made up 20% and 80% of the annual flux, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. The Atlas of Climate and Hydrology for the Komi Republic (Drofa, Moscow, 1997) [in Russian].

  2. S. E. Vomperskii, A. A. Sirin, O. P. Tsyganova, N. A. Valyaeva, and D. A. Maikov, “Bogs and Wetlands in Russia: An Attempt to Analyze the Spatial Distribution and Diversity,” Izv. Akad. Nauk, Geogr., No. 5 (2005) [in Russian].

  3. L. I. Vorob’eva, Archaea, Training Manual for Universities (Akademkniga, Moscow, 2007) [in Russian].

  4. Geocryological Map of the USSR, Ed. by E. D. Ershov and K. A. Kondrat’ev (Min-vo Geologii SSSR, MGU, Moscow, 1998) [in Russian].

  5. Komi Center for Hydrometeorology and Environmental Monitoring. Weather in Petrun’, http://meteork.ru/climate/petrun.shtml (Accessed February 19, 2019).

  6. E. M. Lapteva, Yu. A. Vinogradova, T. I. Chernov, V. A. Kovaleva, and E. M. Perminova, “Structure and Diversity of Soil Microbial Communities in Palsa Mires in the Northwest of Bol’shezemel’skaya Tundra,” Izv. Komi NTs URO RAN, No. 4 (2017) [in Russian].

  7. A. V. Pastukhov, T. I. Marchenko-Vagapova, D. A. Kaverin, and N. N. Goncharova, “Genesis and Evolution of Palsa Mires in the Sporadic Permafrost Area in the European Northeast (Middle Basin of the Kosyu River),” Kriosfera Zemli, No. 1, 20 (2016) [in Russian].

  8. N. I. P’yavchenko, Peatbogs, Their Natural and Economic Significance (Nauka, Moscow, 1985) [in Russian].

  9. Vegetation in the European Part of the USSR (Nauka, Leningrad, 1980) [in Russian].

  10. A. F. Sabrekov, M. V. Glagolev, I. E. Kleptsova, V. N. Bashkin, P. A. Barsukov, and Sh. Sh. Maksyutov, “Contribution of Palsa to Methane Emission from West Siberian Tundra Wetlands,” DOS i GIK, No. 2, 2 (2011) [in Russian].

  11. G. G. Suvorov and M. V. Glagolev, “Duration of the “Methane Emission Period,” in Wetlands and Biosphere: Proceedings of the Sixth Scientific School (September 10–14, 2007) (Tomskii TsNTI, Tomsk, 2007) [in Russian].

  12. A. P. Shennikov, Introduction to Geobotany (LGU, Leningrad, 1964) [in Russian].

  13. G. B. Avery, R. D. Shannon, J. R. White, C. S. Martens, and M. J. Alperin, “Effect of Seasonal Change in the Pathway of Methanogenesis on the δ13C Values of Pore Water Methane in a Michigan Peatland,” Global Biogeochem. Cycles, 6 (1999).

  14. J. Bosio, M. Johansson, T. V. Callaghan, B. Johansen, and T. R. Christensen, “Future Vegetation Changes in Thawing Subarctic Mires and Implications for Greenhouse Gas Exchange—A Regional Assessment,” Climatic Change, No. 2, 115 (2012).

  15. J. L. Bubier, T. R. Moore, L. Bellisario, N. T. Comer, and P. M. Crill, “Ecological Controls on Methane Emissions from a Northern Peatland Complex in the Zone of Discontinuous Permafrost, Manitoba, Canada,” Global Biogeochem. Cycles, No. 4, 9 (1995).

  16. J. E. Heikkinen, T. Virtanen, J. T. Huttunen, V. V. Elsakov, and P. J. Martikainen, “Carbon Balance in East European Tundra,” Global Biogeochem. Cycles, No. 1, 18 (2004).

  17. M. Helbig, W. L. Quinton, and O. Sonnentag, “Warmer Spring Conditions Increase Annual Methane Emissions from a Boreal Peat Landscape with Sporadic Permafrost,” Environ. Res. Lett., No. 11, 12 (2017).

  18. G. Hugelius, J. Strauss, S. Zubrzycki, J. W. Harden, E. Schuur, Chien-Lu Ping, L. Schirrmeister, G. Grosse, G. J. Michaelson, C. D. Koven, J. O’Donnell, B. Elberling, U. Mishra, P. Camill, Zicheng Yu, J. Palmtag, and P. Kuhry, “Estimated Stocks of Circumpolar Permafrost Carbon with Quantified Uncertainty Ranges and Identified Data Gaps,” Biogeosciences (Online), No. 23, 11 (2014).

  19. M. Jackowicz-Korczynski, T. R. Christensen, K. Backstrand, P. M. Crill, T. Friborg, M. Mastepanov, and L. Strom, “Annual Cycle of Methane Emission from a Subarctic Peatland,” J. Geophys. Res., 115 (2010).

  20. X. Liu, Y. Guo, H. Hu, C. Sun, X. Zhao, and C. Wei, “Dynamics and Controls of CO2 and CH4 Emissions in the Wetland of a Montane Permafrost Region, Northeast China,” Atmos. Environ., 122 (2015).

  21. M. Luoto, S. Fronzek, and F. S. Zuidhoff, “Spatial Modelling of Palsa Mires in Relation to Climate in Northern Europe,” Earth Surface Processes and Landforms, No. 11, 29 (2004).

  22. A. Malhotra and N. T. Roulet, “Environmental Correlates of Peatland Carbon Fluxes in a Thawing Landscape: Do Transitional Thaw Stages Matter?”, Biogeosciences, No. 10, 12 (2015).

  23. C. K. McCalley, B. J. Woodcroft, S. B. Hodgkins, R. A. Wehr, E.-H. Kim, R. Mondav, P. M. Crill, J. P. Chanton, V. I. Rich, G. W. Tyson, and S. R. Saleska, “Methane Dynamics Regulated by Microbial Community Response to Permafrost Thaw,” Nature, No. 7523, 514 (2014).

  24. S. C. Moosavi, P. M. Crill, E. R. Pullman, D. Funk, and K. Peterson, “Controls on CH4 Flux from an Alaskan Boreal Wetland,” Global Biogeochem. Cycles, No. 2, 10 (1996).

  25. H. Nykanen, J. E. Heikkinen, L. Pirinen, K. Tiilikainen, and P. J. Martikainen, “Annual CO2 Exchange and CH4 Fluxes on Subarctic Palsa Mire during Climatically Different Years,” Global Biogeochem. Cycles, No. 1, 17 (2003).

  26. J. Rinne, T. Riutta, M. Pihlatie, M. Aurela, S. Haapanala, J.-P. Tuovinen, E. Tuittila, and T. Vesala, “Annual Cycle of Methane Emission from a Boreal Fen Measured by the Eddy Covariance Technique,” Tellus B, No. 3, 59 (2007).

  27. J. P. Schimel, “Plant Transport and Methane Production as Controls on Methane Flux from Arctic Wet Meadow Tundra,” Biogeochemistry, 28 (1995).

  28. J. Schneider, H. F. Jungkunst, U. Wolf, P. Schreiber, M. Gazovic, M. Miglovets, O. Mikhaylov, D. Grunwald, S. Erasmi, M. Wilmking, and L. Kutzbach, “Russian Boreal Peatlands Dominate the Natural European Methane Budget,” No. 1, 11 (2016).

  29. E. A. G. Schuur, A. D. McGuire, C. Schaedel, G. Grosse, J. W. Harden, D. Hayes, G. Hugelius, C. Koven, P. Kuhry, D. Lawrence, S. Natali, D. Olefeldt, V. Romanovsky, K. Schaefer, M. Turetsky, C. Treat, and J. Von, “Climate Change and the Permafrost Carbon Feedback,” Nature, 520 (2015).

  30. A. Sirin, T. Minayeva, T. Yurkovskaya, O. Kuznetsov, V. Smagin, and Yu. Fedorov, “Russian Federation (European Part),” in Mires and Peatlands of Europe: Status, Distribution and Conservation, Ed. by H. Joosten, F. Tanneberger, and A. Moen (Schweizerbart Science Publishers, Stuttgart, 2017).

  31. D. Wagner, C. Wille, S. Kobabe, and E. M. Pfeiffer, “Simulation of Freezing-thawing Cycles in a Permafrost Microcosm for Assessing Microbial Methane Production under Extreme Conditions,” Permafrost and Periglacial Processes, No. 4, 14 (2003).

  32. G. J. Whiting and J. P. Chanton, “Plant-dependent CH4 Emission in a Subarctic Canadian Fen,” Global Biogeochem. Cycles, 6 (1992).

Download references

Funding

The present study is performed within the research theme of the Institute of Biology of Komi Scientific Center (Ural Branch, Russian Academy of Sciences (RAS)) АААА-А17-117122090014-8 “Spatiotemporal Dynamics of Structure and Productivity of Phytocenoses of Forest and Wetland Ecosystems in Northeastern European Russia” and the complex program for basic research of the Ural Branch of RAS (project number 18-4-4-17 “Vertical Fluxes of Carbonaceous Greenhouse Gases in Boreal Forest and Wetland Ecosystems in Modern Climate”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to М. N. Miglovets.

Additional information

Russian Text ©The Author(s), 2021, published in Meteorologiya i Gidrologiya, 2021, No. 1, pp. 93-102.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miglovets, М.N., Zagirova, S.V., Goncharova, N.N. et al. Methane Emission from Palsa Mires in Northeastern European Russia. Russ. Meteorol. Hydrol. 46, 52–59 (2021). https://doi.org/10.3103/S1068373921010076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373921010076

Keywords

Navigation