Skip to main content
Log in

Role of the soil particle-size fractions in the sorption and desorption of potassium

  • Agrochemistry and Fertility of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The sorption and desorption capacities of two soils (a loamy soddy-podzolic soil and a sandy clay chernozem) were analyzed. Both the entire soils and their particle-size fractions were studied. Samples were taken from the soils of long-term field experiments with fertilizers. A 0.01 M CaCl2 solution was used as the extractant. The soil fractions <10 μm were found to have the maximum capacities for sorption-desorption of potassium. The soil fractions <0.2 μm were the most enriched with potassium. The use of kinetic methods of analysis allowed assessing the contributions of the particle-size fractions to the potassium status of soils with different degrees of fertilization. It was noted that different fertilizing systems had no effect on the rates of potassium desorption from the colloidal fraction, while appreciable differences among the different treatments were observed for the fractions of 0.2–1.0 and 1–10 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. I. Abidueva and T. A. Sokolova, Clay Minerals and the Potassium Status of Steppe Soils in the West of the Transbaikal Region (Izd. SO RAN, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  2. S. V. Astapov, Ameliorative Soil Science (Sel’khozgiz, Moscow, 1958) [in Russian].

    Google Scholar 

  3. I. G. Vazhenin and G. I. Karaseva, “On the Forms of Potassium in Soils and the Potassium Nutrition of Plants,” Pochvovedenie, No. 3 (1959).

  4. N. I. Gorbunov, “Nature of Potassium Fixation in the Nonexchangeable Form,” Khimiz. Sotsialistich. Zemled. No. 2, 82 (1936).

  5. B. P. Gradusov, Minerals with the Smectitic Structure in Soils (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  6. L. M. Zhukova, N. K. Pankova, and L. V. Nikitina, The Effect of the Long-Term Fertilization on the Potassium Regime of Soddy-Podzolic Soils and Leached Chernozems (Agropromizdat, Moscow, 1985), Part 8 [in Russian].

    Google Scholar 

  7. L. M. Zhukova and V. E. Silaeva, The Accumulation and Transformation of Potassium in Different Soils Subjected to the Long-Term Fertilization and the Bioavailability of Potassium (Kolos, Moscow, 1966) [in Russian].

    Google Scholar 

  8. O. N. Kozlova, S. M. Lukin, T. A. Sokolova, A. V. Kolesnikov, N. N. Bychkov, “The Contribution of Different Particle-Size Fractions to the Supply of a Loamy Sandy Soddy-Podzolic Soil in Exchangeable and Nonexchangeable Potassium,” Agrokhimiya, No. 12, 15–23 (2000).

  9. O. P. Medvedeva, L. D. Slutskaya, R. A. Shirshova, and T. V. Lobanova, “Availability of Soil and Fertilizer Potassium in Different Soil Types in Experiments with 40K,” Agrokhimiya, No. 9, 29–35 (1983).

  10. E. G. Pivovarova, “Forms of Potassium in the Particle-Size Fractions of Chernozems,” in Fertilizer Efficiency in Crop Rotation Systems Applied in the Altai Region (Barnaul, 1988), 42–51 [in Russian].

  11. V. U. Pchelkin, Soil Potassium and Potassium Fertilizers (Kolos, Moscow, 1966) [in Russian].

    Google Scholar 

  12. V. P. Seredina, Potassium in Automorphic Soils Developed from Loesslike Loams (Tomsk, 1984) [in Russian].

  13. L. S. Skoropanova, “Availability of Potassium in the Clay and Fine Silt Fractions,” Pochvoved. Agrokhim. 25, 37–46 (1989).

    Google Scholar 

  14. T. A. Sokolova, Clay Minerals in Soils and Their Role in Soil Fertility. Part I (Izd. Mosk. Gos. Univ., Moscow, 1984) [in Russian].

    Google Scholar 

  15. T. A. Sokolova, T. Ya. Dronova, and I. I. Tolpeshta, Clay Minerals in Soils (Grig i K, Tula, 2005) [in Russian].

    Google Scholar 

  16. T. A. Sokolova, V. V. Nosov, and V. V. Prokoshev, “Kinetics of Readily Exchangeable Potassium Displacement by Calcium from Soddy-Podzolic Soils of Different Textures,” Eur. Soil Sci. 32(5), 521–530 (1999).

    Google Scholar 

  17. I. V. Talyzina, T. A. Sokolova, N. Yu. Kulakova, and M. K. Sapanov, “Chemical and Mineralogical Characterization and Some Indices of the Potassium Status in the Chernozemlike and Solod Soils,” Pochvovedenie, No. 9, 61–67 (1994).

  18. N. A. Titova, L. S. Travnikova, Yu. V. Kuvaeva, and I. V. Volodarskaya, “The Composition of Clay Components in an Arable Soddy-Podzolic Soil,” Pochvovedenie, No. 6, 89–97 (1989).

  19. M. Sh. Shaimukhametov and K. A. Voronina, “Methodology of Fractionation of Organic-Clay Complexes with the Use of Laboratory Centrifuges,” Pochvovedenie, No. 8, 134–138 (1972).

  20. M. T. Aide, G. J. Cwick, and M. F. Cummings, “Clay Mineralogy and Potassium Status of Selected Soils in the Glacial Lake Agassiz Region of Central Manitoba,” Canad. J. Soil Sci. 79(1), 141–148 (1999).

    Article  Google Scholar 

  21. M. J. Eick, A. Bar-Tal, D. L. Sparks, and S. Feigenbaum, “Analyses of Adsorption Kinetics Using a Stirred-Flow Chamber. 2. Potassiu-Calcium Exchange on Clay Minerals,” Soil Sci. Soc. Am. J. 54(5), 1278–1282 (1990).

    Article  Google Scholar 

  22. E. Elkhatib and J. Hern, “Kinetics of Potassium Desorption from Appalachian Soils,” Soil Sci. 145(1), 11–19 (1988).

    Article  Google Scholar 

  23. S. Feigenbaum, A. Bar-Tal, R. Portnoy, and D. L. Sparks, “Binary and Ternary Exchange of Potassium on Calcareous Montmorillonitic Soils,” Soil Sci. Soc. Am. J. 55(1), 49–56 (1991).

    Article  Google Scholar 

  24. S. Feigenbaum, A. Bar-Tal, and D. L. Sparks, “Dynamics of Soil Potassium in Multicationic Systems,” in Development of K-fertilizer Recommendations (Worblaufen, Bern, 1990), 145–161.

    Google Scholar 

  25. P. M. Jardine and D. L. Sparks, “Potassium-Calcium Exchange in a Multireactive Soil System: 1. Kinetics,” Soil Sci. Soc. Am. J. 47, 39–45 (1984).

    Article  Google Scholar 

  26. P. Leinweber and G. Reuter, “Influence of Various Fertilization on the Mineralogical Composition of Clay Fractions in Long-Term Field Experiments,” Z. Pflanzenern. Bodenk. 152, 373–377 (1989).

    Article  Google Scholar 

  27. H. W. Martin and D. L. Sparks, “Kinetics of Nonexchangeable Potassium Release from Two Coastal Plain Soils,” Soil Sci. Soc. Am. J. 47, 883–887 (1983).

    Article  Google Scholar 

  28. K. Mengel and Dou H. Rahmatullah, “Release of Potassium from the Silt and Sand Fraction of Loess-Derived Soils,” Soil Sci. 163, 805–813 (1998).

    Article  Google Scholar 

  29. E. J. Meurer and R. M. V. Castilhos, “Liberacao de Potassio de Fracoes de Solos e Sua Cinetica,” Rev. Brasil. Cienc. Solo 25(4), 823–829 (2001).

    Google Scholar 

  30. D. A. Munn, L. P. Wilding and E. D. McLean, “Potassium Release from Sand, Silt and Clay Soil Separates,” Soil Sci. Soc. Am. J. 40(3 P), 364–366 (1976).

    Article  Google Scholar 

  31. P. Schachtchabel and W. Köster, “Vergleich Verschiedender Extraktionsmethoden Zur Bestimmung Der Kaliumverfugbarkeit in Böden,” Z. Pflanzenern. Bodenk. 141(1), 43–55 (1978).

    Article  Google Scholar 

  32. E. Schlichting and V. Clemens, “Analyse der L-Dungewirkung an Einem Humuspelosol-Standort,” Z. Pflanzenern. Bodenk. 147(3), 361–370 (1984).

    Article  Google Scholar 

  33. A. Schneider and P. Villemin, “Importance of Texture and CEC in K Fertilization Advice,” in Potash Review (Basel, 1993), 34–37.

  34. H. M. Selim, R. S. Mansell, and L. W. Zelazny, “Modeling Reactions and Transport of Potassium in Soils,” Soil Sci. 122, 77–84 (1976).

    Article  Google Scholar 

  35. S. Sivasubramuniam and O. Talibudeen, “Potassium-Aluminum Exchange in Acid Soils: I. Kinetics,” Soil Sci. 23, 163–176 (1972).

    Article  Google Scholar 

  36. D. L. Sparks, “Chemistry of Soil Potassium in Atlantic Coastal Plain Soils: A Review,” Commun. Soil Sci. Plant Anal. 11, 435–449 (1980).

    Article  Google Scholar 

  37. D. L. Sparks, “Kinetics of Ionic Reactions in Clay Minerals and Soils,” Adv. in Agron. 38, 231–266 (1985).

    Article  Google Scholar 

  38. D. L. Sparks, Kinetics of Soil Chemical Processes (Acad. Press, 1989).

  39. D. L. Sparks and P. M. Jardine, “Comparison of Kinetic Equations to Describe Potassium-Calcium Exchange in Pure and in Mixed Systems,” Soil Sci. 138(2), 115–122 (1984).

    Article  Google Scholar 

  40. P. K. Tarafdar and A. K. Mukhopadhyay, “Influence of Fineness of Texture and CEC on the K Status of Soils,” J. Indian Soc. Soil Sci. 37 (1), 208–210 (1989).

    Google Scholar 

  41. F. L. Wang and P. M. Huang, “Effects of Organic Matter on the Rate of Potassium Adsorption by Soils,” Can. J. Soil Sci. 81, 325–330.

  42. J. M. Zhou and P. M. Huang, “Kinetics and Mechanisms of Monoammonium Phosphate-Induced Potassium Release from Selected Potassium-Bearing Minerals,” Canad. J. Soil Sci. 86(5), 799–811 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Petrofanov.

Additional information

Original Russian Text © V.L. Petrofanov, 2012, published in Pochvovedenie, 2012, No. 6, pp. 668–681.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrofanov, V.L. Role of the soil particle-size fractions in the sorption and desorption of potassium. Eurasian Soil Sc. 45, 598–611 (2012). https://doi.org/10.1134/S1064229312060099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229312060099

Keywords

Navigation