Skip to main content
Log in

Vertic processes and specificity of organic matter properties and distribution in Vertisols

  • Soil Genesis
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soil organic matter (SOM) was studied in relation to vertic processes (i.e., shrinking/swelling, cracking, vertical turbation, lateral shearing, gilgai formation) in Vertisols and vertic soils of the North Caucasus in Russia, and Texas and Louisiana in the USA. Their impact on SOM properties and distribution was analyzed according to various levels of soil organization, such as soil cover, profile, horizon, and aggregate structure using chemical methods, micromorphology, isotopic analyses, and physical fractionation. The greatest variations both in the distribution and properties of SOM were found in mature Vertisols at the level of soil cover including Ctot, organic carbon stocks, stable carbon isotopic composition, and SOM 14C-age, chemical composition. The distribution of SOM at the profile and horizon levels was related to the functioning of Vertisols during wet-dry cycles. The isotopic and chemical study of densi-granulometric fractions at the aggregate level reflected the minor role of vertic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Adams and P. F. Grierson, “Stable Isotopes at Natural Abundance in Terrestrial Plant Ecology and Ecophysiology: An Update,” Plant Biol., No. 3, 299–310 (2001).

  2. S. Arai, T. Hatta, U. Tanaka, et al., “Characterization of the Organic Components of an Alfisol and a Vertisol in Adjacent Locations in Indian Semiarid Tropics Using Optical Spectroscopy, 13C NMR Spectroscopy, and 14C Dating,” Geoderma 69, 59–70 (1996).

    Article  Google Scholar 

  3. E. V. Arinushkina, Manual for Chemical Analyses of Soils (Moscow State Univ., Moscow, 1970).

    Google Scholar 

  4. G. H. Ashley, “Impregnation of Fine-Grained Sediments with a Polyester Resin: a Modification of Altmuller’s Method,” J. Sediment. Petrol. 43, 298–301 (1973).

    Google Scholar 

  5. P. Becker-Heidmann, O. Anderson, D. Kalmar, et al., “Carbon Dynamics in Vertisols as Revealed by High-Resolution Sampling,” Radiocarbon 44, 63–73 (2002).

    Google Scholar 

  6. G. G. Beckmann, G. D. Hubble, and C. H. Thompson, “Gilgai Forms, Distribution and Soil Relationships in North-Eastern Australia: Paper No 2898,” in Symposium on Soils and Earth Structures in Arid Climates, Adelaide, 1970, pp. 88–93.

  7. G. Blackburn, J. R. Sleeman, and H. W. Scharpenseel, “Radiocarbon Measurements and Soil Micromorphology as Guides to the Formation of Gilgai at Kaniva, Victoria,” Aust. J. Soil Res. 19, 1–15 (1979).

    Article  Google Scholar 

  8. S. W. Buol, F. D. Hole, and R. J. McCracken, Soil Genesis and Classification (Iowa State University Press, Ames, IA, 1989).

    Google Scholar 

  9. K. Y. Chan, “Consequences of Changes in Particulate Organic Carbon in Vertisols under Pasture and Cropping,” Soil Sci. Soc. Am. J. 61, 1376–1382 (1997).

    Article  Google Scholar 

  10. A. Conteh, G. J. Blair, and I. J. Rochester, “Soil Organic Carbon Fractions in a Vertisol under Irrigated Cotton Production as Affected by Burning and Incorporating Cotton Stubble,” Aust. J. Soil Res. 36, 655–667 (1998).

    Article  Google Scholar 

  11. T. E. Dawson, S. Mambelli, A. Plamboeck, et al., “Stable Isotopes in Plant Ecology,” Annu. Rev. Ecol. Syst. 33, 507–559 (2002).

    Article  Google Scholar 

  12. M. T. Dell’Abate, A. Benedetti, A. Trinchera, and C. Dazzi, “Humic Substances along the Profile of Two Typic Haploxerert,” Geoderma 107(3–4), 281–296 (2002).

    Article  Google Scholar 

  13. R. Dudal, Dark Clay Soils of Tropical and Subtropical Regions (FAO, Rome, 1965).

    Google Scholar 

  14. M. B. Holder and S. M. Griffith, “Some Characteristics of Humic Materials in Caribbean Vertisols,” Can. J. Soil Sci. 63, 151–159 (1983).

    Article  Google Scholar 

  15. I. Kovda, O. Chichagova, and C. Mora, “Organic Matter in a Gilgai Soil Complex, Southeastern Russia: Chemical and Isotopic Compositions,” in Advances in Geoecology, Vol. 36 Sustainable Use and Management of Soils: Arid and Semiarid Regions, Ed. A. Faz Cano, R. Ortiz, and A. R. Mermut, Catena Suppl., pp. 45–56 (2005).

  16. I. Kovda, A. Ermolayev, A. Golyeva, and E. Morgun, “Landscapes with Vertisols: Elements of Development Reconstructed by Botanical and Biomorphous Analyses,” Izv. Ross. Akad. Nauk, Ser. Biol., No. 3, 367–377 (1999).

  17. I. Kovda, W. Lynn, D. Williams, and O. Chichagova, “Radiocarbon Age of Vertisols and Its Interpretation Using Data on Gilgai Complex in the North Caucasus,” Radiocarbon 43, 603–609 (2001).

    Google Scholar 

  18. I. Kovda, E. Morgun, and T. Alekseeva, “Development of Gilgai Soil Cover in Central Ciscaucasia,” Eur. Soil Sci. 24(6), 28–45 (1992).

    Google Scholar 

  19. I. Kovda, E. Morgun, and Ya. Ryskov, “Structural-Functional Analysis of Gilgai Soil Microcomplex: Morphological Features and Moisture Dynamics,” Eur. Soil Sci. 28(12), 20–38 (1996).

    Google Scholar 

  20. I. V. Kovda and L. P. Wilding, “Vertisols: Problems of Classification, Evolution, and Spatial Self-Organization,” Eur. Soil Sci. 37, 1341–1351 (2004).

    Google Scholar 

  21. E. S. Krull and J. O. Skjemstad, “δ13C and δ15N Profiles in 14C-Dated Oxisol and Vertisols as a Function of Soil Chemistry and Mineralogy,” Geoderma 112, 1–29 (2003).

    Article  Google Scholar 

  22. L. W. Liu, “Radiocarbon Dating of Vertisols in China,” Pedosphere 6(2), 147–153 (1996).

    Google Scholar 

  23. M. C. Larré-Larrouy, E. Blanchart, A. Albrecht, and C. Feller, “Carbon and Monosaccharides of a Tropical Vertisol under Pasture and Market-Gardening: Distribution in Secondary Organomineral Separates,” Geoderma 119, 163–178 (2004).

    Article  Google Scholar 

  24. D. L. Miller, MS Thesis (University of Tennessee, Knoxville, 2000).

  25. M. B. Holder and S. M. Griffith, “Some Characteristics of Humic Materials in Caribbean Vertisols,” Can. J. Soil. Sci. 63, 151–159 (1983).

    Article  Google Scholar 

  26. V. V. Ponomareva and T. A. Plotnikova, Humus and Pedogenesis (Methods and Results of Investigation (Nauka, Leningrad, 1980), 221 pp.

    Google Scholar 

  27. G. G. Ristori, E. Sparvoli, M. de Nobili, and L. P. D’Acqui, “Characterization of Organic Matter in Particle-Size Fractions of Vertisols,” Geoderma 54, 295–305 (1992).

    Article  Google Scholar 

  28. C. Rivero, N. Senesi, J. Paolini, and V. D’Orazio, “Characterization of Humic Acids of Some Venezuelian Soils,” Geoderma 81, 227–239 (1998).

    Article  Google Scholar 

  29. H. W. Scharpenseel, J. Freytag, and P. Becker-Heidmann, “C-14-Altersbestimmung und δ13C-Messungen an Vertisolen, unter besonderer Berucksichtigung der Gezirabden des Sudan,” Z. Pflanzenernaehr. Bodenkd. 149, 277–89 (1986).

    Article  Google Scholar 

  30. H. W. Scharpenseel and F. Pietig, “University of Bonn Natural Radiocarbon Measurements V,” Radiocarbon 15(1), 13–41(1973a).

    Google Scholar 

  31. H. W. Scharpenseel and F. Pietig, “University of Bonn Natural Radiocarbon Measurements VI,” Radiocarbon 15(2), 252–279 (1973b).

    Google Scholar 

  32. M. Sh. Shaimukhametov, N. A. Titova, L. S. Travnikova, and E. M. Labenetz, “Physical Methods of Soil Fractioning for the Characterization of the Soil Organic Matter,” Pochvovedenie, No. 8, 131–141 (1984).

  33. S. Stephan, J. Berrier, A. A. De Petre, et al., “Characterization of In Situ Organic Matter Constituents in Vertisols from Argentina, Using Submicroscopic and Cytochemical Methods: First Report,” Geoderma 30, 21–34 (1983).

    Article  Google Scholar 

  34. Soil Survey Staff, Soil Survey Laboratory Methods Manual, Soil Survey Investigations Report. No. 42 (1996), 693 pp.

  35. L. P. Wilding and D. Tessier, “Genesis of Vertisols: Shrink-Swell Phenomena,” in Vertisols: Their Distribution, Properties, Classification, and Management, Ed. by L. P. Wilding and R. Puentes, Tech. Monogr. No. 18, (Texas A&M, College Station, 1988), pp. 55–81.

    Google Scholar 

  36. L. P. Wilding, D. Williams, W. Miller, et al., “Close Interval Spatial Microvariability of Vertisols: a Case Study in Texas,” in Proc. Sixth Int. Soil Correlation Meeting “Characterization, Classification, and Utilization of Cold Aridisols and Vertisols,” 1990, Ed. by J. M. Kimble (USDA Soil Conservation Service, National Soil Survey Center, Lincoln, 1990), pp. 232–247.

    Google Scholar 

  37. L. P. Wilding, I. V. Kovda, E. G. Morgun, and D. Williams, Reappraisal of the Pedon Concept for Vertisols: Consociations or Complexes? Extended abstract on CD, 17th Int. Congr. Soil Sci., Thailand, 2002.

  38. D. H. Yaalon and D. Kalmar, “Dynamics of Cracking and Swelling Clay Soils: Displacement of Skeletal Grains, Optimum Depth of Slickensides, and Rate of Intra-Pedonic Turbation,” Earth Surface Processes 3, 31–42 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kovda.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovda, I., Morgun, E. & Boutton, T.W. Vertic processes and specificity of organic matter properties and distribution in Vertisols. Eurasian Soil Sc. 43, 1467–1476 (2010). https://doi.org/10.1134/S1064229310130065

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229310130065

Keywords

Navigation