Skip to main content
Log in

The role of iron in the fixation of heavy metals and metalloids in soils: a review of publications

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Iron’s contribution to fixing heavy metals and metalloids in soils is very important. Iron compounds participating in redox processes control the behavior of siderophilic elements with variable oxidation degrees (Cr, As, and Sb). The behavior of heavy elements with permanent oxidation (Zn, Co, and Ni) indirectly depends on iron compounds. In organic soils, iron competes with heavy metals for active places in the functional groups of organic substances. Organic pollutants intensify the reduction of iron (hydr)oxides in an anaerobic environment, which influences the release of arsenic. Iron compounds are used as ameliorating agents and geochemical barriers for fixing heavy elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. N. Vodyanitskii, “Application of Iron Compounds as Soil Structuring Agents,” Pochvovedenie, No. 12, 49–54 (1985).

  2. D. V. Ladonin, “Heavy Metal Compounds in Soils: Problems and Methods of Study,” Pochvovedenie, No. 6, 682–692 (2002) [Eur. Soil Sci. 35 (6), 605–613 (2002)].

  3. G. V. Motuzova, Microelement Compounds in Soils: Systems Organization, Ecological Significance, and Monitoring (Editorial URSS, Moscow, 1999) [in Russian].

    Google Scholar 

  4. D. S. Orlov, L. K. Sadovnikova, and I. N. Lozanovskaya, Ecology and Protection of the Biosphere upon Chemical Pollution (Vyssh. shk., Moscow, 2002) [in Russian].

    Google Scholar 

  5. S. Ahrland, A. Dahlgren, and I. Persson, “Stabilities and Hydrolysis of Some Iron(III) and Manganese(III) Complexes with Chelating Ligands,” Acta Agric. Scand. 40, 101–111 (1990).

    Article  Google Scholar 

  6. S. Ambe, “Adsorption Kinetics of Antimony(V) Ions onto Alfa-Fe2O3 Surfaces from an Aqueous Solution,” Langmuir 3, 489–493 (1987).

    Article  Google Scholar 

  7. M. A. Armienta, G. Villasenor, R. Rodrigues, et al., “The Role of Arsynic-Bearing Rocks in Groundwater Pollution at Zimapan Valley, Mexico,” Environ. Geol 40, 571–581 (2001).

    Article  Google Scholar 

  8. R. J. Bartlett and L. M. Kimble, “Behavior of Chromium in Soils: II. Hexavalent Forms,” J. Environ. Quality 5, 383–386 (1976).

    Google Scholar 

  9. N. Belzile, Y. W. Chen, and Z. J. Wang, “Oxidation of Antimony(III) by Amorphous and Manganese Oxyhydroxides,” Chem. Geol. 174, 379–387 (2001).

    Article  Google Scholar 

  10. S. G. Benner, C. Hansel, B. Wielinga, et al., “Reductive Dissolution and Biomineralization of Iron Hydroxide under Dynamic Flow Conditions,” Environ. Sci. Technol. 36, 1705–1711 (2002).

    Article  Google Scholar 

  11. D. W. Blowes, C. J. Ptacek, S. G. Benner, et al., “Treatment of Inorganic Contaminants Using Permeable Reactive Barriers,” J. Contam. Hydrol. 45, 123–137 (2000).

    Article  Google Scholar 

  12. D. W. Blowes, C. J. Ptacek, and J. L. Jambor, “In Situ Remediation of Cr(VI)-Contaminated Groundwater Using Permeable Reactive Walls: Laboratory Studies,” Environ. Sci. Technol. 31, 2248–3357 (1997).

    Article  Google Scholar 

  13. D. L. Bond and S. Fendorf, “Kinetics and Structural Constrains of Chromate Reduction by Green Rust,” Environ. Sci. Technol. 37, 2750–2757 (2003).

    Article  Google Scholar 

  14. J. M. Brannon and W. H. Patrick Jr., “Fixation and Mobilization of Antimony in Sediments,” Environ. Pollut. 9B, 107–126 (1985).

    Google Scholar 

  15. I. J. Brett and J. F. Banfield, “Microbial Communities in Acid Mine Drainage,” FEMS Microbiol. Ecol. 44, 139–152 (2003).

    Article  Google Scholar 

  16. G. E. Brown, A. L. Foster, and J. D. Ostergren, “Mineral Surface and Bioavailability of Heavy Metals: AMolecular-Scale Perspective,” Proc. Natl. Acad. Sci. USA 96, 3388–3395 (1999).

    Article  Google Scholar 

  17. C. Brunori, C. Cremisini, P. Massanisso, et al., “Reuse of Treated Red Mud Bauxite Waste: Studies on Environmental Compatibility,” J. Hazard. Mater. 1, 55–63 (2005).

    Article  Google Scholar 

  18. D. E. Cummings, F. Caccavo, S. Fendorf, and R. F. Rosenzweig, “Arsenic Mobilization by the Dissimilatory Fe(III)-Reducing Bacterium Shewanella Alga BrY,” Environ. Sci. Technol. 33, 723–729 (1999).

    Article  Google Scholar 

  19. K. J. Cantrell, D. I. Kaplan, and T. W. Wietsma, “Zero-Valent Iron for the In-Situ Remediation of Selected Metals in Groundwater,” Hazard. Mater 42, 201–212 (1995).

    Article  Google Scholar 

  20. Y.-W. Chen, T.-L. Deng, M. Filella, and N. Belzile, “Distribution and Early Diagenesis of Antimony Species in Sediments and Pore Water of Freshwater Lakes,” Environ. Sci. Technol. 37, 1163–1168 (2003).

    Article  Google Scholar 

  21. D. C. Cooper, A. Neal, R. K. Kukkadapu, et al., “Effects of Sediment Iron Mineral Composition on Microbially Mediated Changes in Divalent Metal Speciation: Importance of Ferrihydrite,” Geochim. Cosmochim. Acta 69, 1739–1754 (2005).

    Article  Google Scholar 

  22. D. C. Cooper, F. Picardal, J. Rivera, and C. Talbot, “Zinc Immobilization and Magnetite Formation via Ferric Oxide Reduction by Shewanella putrefaciens,” Environ. Sci. Technol. 34, 100–106 (2000).

    Article  Google Scholar 

  23. D. C. Cooper, F. Picardal, and A. J. Coby, “Interactions Between Microbial Iron Reduction and Metal Geochemistry: Effect of Redox Cycling on Transition Metal Speciation in Iron Bearing Sediments,” Environ. Sci. Technol. 40, 1884–1891 (2006).

    Article  Google Scholar 

  24. E. A. Crecelius, M. N. Bothner, and R. Carpenter, “Geochemistries of Arsenic, Antimony, Mercury, and Related Elements in Sediments of Puget Sound,” Environ. Sci. Technol. 9, 325–333 (1975).

    Article  Google Scholar 

  25. P. D’Angelo and M. Benfatto, “Effect of Multielectronic Configurations on the XAFS Analysis at the Fe K Edge,” J. Phys. Chem. 108, 4505–4514 (2004).

    Google Scholar 

  26. S. H. R. Davies and J. J. Morgan, “Manganese(II) Oxidation Kinetics on Metal-Oxide Surfaces,” J. Colloid Interface Sci. 129, 63–77 (1989).

    Article  Google Scholar 

  27. J. L. Delemos, B. C. Bostick, C. E. Renzhaw, et al., “Landfill-Stimulated Iron Reduction and Arsenic Release at the Coakley Superfund Site (NH),” Environ. Sci. Technol. 40, 67–73 (2006).

    Article  Google Scholar 

  28. C. S. Doyle, T. Kendelewicz, B. C. Bostick, and G. E. Brown, “Soft X-Ray Spectroscopic Studies of the Reaction of Fractured Pyrite Surface with Cr(VI)Containing Aqueous Solution,” Geochim. Cosmochim. Acta 68, 4287–4299 (2004).

    Article  Google Scholar 

  29. L. E. Eary and D. Rai, “Chromate Reduction by Subsurface Soils under Acidic Conditions,” Soil Sci. Soc. Am. J. 55, 676–683 (1991).

    Article  Google Scholar 

  30. L. El Bilali, P. E. Rasmussen, G. E. M. Hall, and D. Fortin, “Role of Sediment Composition in Trace Metal Distribution in Lake Sediments,” Appl. Geochem. 17, 1171–1181 (2002).

    Article  Google Scholar 

  31. D. W. Elliot and W. X. Zhang, “Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment,” Environ. Sci. Technol. 35, 4922–4926 (2001).

    Article  Google Scholar 

  32. J. Farrell, J. Wang, P. O’Day, and M. Conklin, “Electrochemical and Spectroscopic Study of Arsenate Removal from Water Using Zerovalent Iron Media,” Environ. Sci. Technol. 35, 2026–2032 (2001).

    Article  Google Scholar 

  33. S. Fendorf, M. J. Eick, P. Grossl, and D. L. Sparks, “Arsenate and Chromate Retention Mechanisms on Goethite. 1. Surface Structure,” Environ. Sci. Technol. 31, 315–320 (1997).

    Article  Google Scholar 

  34. S. Fendorf, B. W. Wielinga, and C. M. Hansel, “Chromium Transformation in Natural Environments: The Role Biological and Abiological Processes in Chromium(VI) Reduction,” Int. Geol. Rev. 42, 691–701 (2000).

    Article  Google Scholar 

  35. M. Filliela, N. Belzile, and Y. W. Chen, “Antimony in the Environment: a Review Focused on Natural Waters. I. Occurrence,” Earth Sci. Rev. 57, 125–176 (2002).

    Article  Google Scholar 

  36. M. Filliela, N. Belzile, and Y. W. Chen, “Antimony in the Environment: a Review Focused on Natural Waters. II. Relevant Solution Chemistry,” Earth Sci. Rev. 59, 265–285 (2002).

    Article  Google Scholar 

  37. A. J. Francis, C. J. Dodge, A. W. Rose, and A. J. Ramirez, “Aerobic and Anaerobic Dissolution of Toxic Metals from Coal Wastes: Mechanism of Action,” Environ. Sci. Technol. 23, 435–441 (1989).

    Article  Google Scholar 

  38. G. K. Fredrickson and Y. A. Gorby, “Environmental Processes Mediated by Iron Reducing Bacteria,” Curr. Opin. Biotechnol 7, 287–294 (1996).

    Article  Google Scholar 

  39. G. K. Fredrickson, J. M. Zachara, D. W. Kennedy, et al., “Reduction of U(VI) in Goethite (α-FeOOH) Suspensions by Dissimilatory Metalrevusing Bacterium,” Geochim. Cosmochim. Acta 64, 3085–3098 (2000).

    Article  Google Scholar 

  40. G. K. Fredrickson, J. M. Zachara, R. K. Kukkadapu, et al., “Biotransformation of Ni-Substituted Hydrous Ferric Oxide An Fe(III)-Reducing Bacterium,” Environ. Sci. Technol. 35, 703–712 (2001).

    Article  Google Scholar 

  41. W. Friesl, E. Lombi, O. Horak, and W. W. Wenzel, “Immobilization of Heavy Metals in Soil Using Inorganic Amendments in a Greenhouse Study,” J. Plant Nutr. Soil Sci. 166, 191–196 (2003).

    Article  Google Scholar 

  42. C. C. Fuller, J. A. Davis, and G. A. Waychunas, “Surface Chemistry of Ferrihydrite: Part 2. Kinetics of Arsenate Adsorption and Coprecitation,” Geochim. Cosmochim. Acta 57, 2271–2282 (1993).

    Article  Google Scholar 

  43. Y. Furukawa, J.-W. Kim, J. Watkins, and R. T. Wilkin, “Formation of Ferrihydrite and Associated Iron Corrosion Products in Permeable Reactive Barriers of Zerovalent Iron,” Environ. Sci. Technol. 36, 5469–5475 (2002).

    Article  Google Scholar 

  44. V. P. Gadepalle, S. K. Ouki, R. van Herwijnen, and T. Hutchings, “Immobilization of Heavy Metals in Soil Using Natural and Waste Materials for Vegetation Establishment on Contaminated Sites,” Soil Sediment Contam. 16, 233–251 (2007).

    Article  Google Scholar 

  45. H. G. Gan, W. Baily, and Y. S. Yu, “Morphology of Lead(II) and Chromium(III) Reaction Products of Phyllosilicate Surface as Determined by Atomic Force Microscopy,” Clays Clay Miner. 44, 734–743 (1996).

    Article  Google Scholar 

  46. F. Garrido, V. Illera, and M. T. Garcia-Gonzalez, “Effect of Addition of Gypsum- and Lime-Rich Industrial By-Products on Cd, Cu, and Pb Availability and Leachability in Metal Spiked Acid Soil,” Appl. Geochem. 20, 397–408 (2005).

    Article  Google Scholar 

  47. M. Grafe, M. J. Eick, and P. R. Grossel, “Adsorption of Arsenate (V) and Arsenite (III) on Goethite in the Presence and Absence of Dissolved Organic Carbon,” Soil Sci. Soc. Am. J. 65, 1680–1687 (2001).

    Article  Google Scholar 

  48. B. Gu, T. J. Phelps, L. Liang, et al., “Biogeochemical Dynamics in Zerovalent Iron Columns: Implications for Permeable Reactive Barriers,” Environ. Sci. Technol. 33, 2170–2177 (1999).

    Article  Google Scholar 

  49. J. P. Gustafsson, I. Persson, D. B. Kleja, and J. W. J. Van Schaik, “Binding of Iron(III) To Organic Soils: EXAFS Spectroscopy and Chemical Equilibrium Modeling,” Environ. Sci. Technol. 41, 1232–1237 (2007).

    Article  Google Scholar 

  50. C. M. Hansel, S. G. Benner, J. Neiss, et al., “Secondary Mineralization Pathways Induced by Dissimilatory Iron Reduction of Ferrihydrite under Advective Flow,” Geochim. Cosmochim. Acta 67, 2977–2992 (2003).

    Article  Google Scholar 

  51. W. Hartley, R. Edwards, and N. W. Lepp, “Arsenic and Heavy Metal Mobility in Iron Oxide Amended Contaminated Soils as Evaluated by Short and Long Term Leaching Tests,” Environ. Pollut. 131, 495–504 (2004).

    Article  Google Scholar 

  52. R. B. Herbert, “Zinc Immobilization by Zerovalent Fe: Surface Chemistry and Mineralogy of Reaction Products,” Mineral. Mag. 67, 1285–1298 (2003).

    Article  Google Scholar 

  53. V. Illera, F. Garrido, S. Serrano, and M. T. Garcia-Gonzalez, “Immobilization of the Heavy Metals Cd, Cu, and Pb in an Acid Amended with Gypsum- and Lime-Rich Industrial By-Products,” Eur. J. Soil Sci. 55, 135–145 (2004).

    Article  Google Scholar 

  54. F. S. Islam, A. G. Gault, C. Boothman, et al., “Role of Metal-Reducing Bacteria in Arsenic Release from Bengal Delta Sediments,” Nature 430, 68–71 (2004).

    Article  Google Scholar 

  55. B. P. Jackson and W. P. Miller, “Effectiveness of Phosphate and Hydroxide for Desorption of Arsenic and Selenium Species from Iron Oxides,” Soil Sci. Soc. Am. J. 64, 1616–1622 (2000).

    Article  Google Scholar 

  56. A. Jain and R. H. Loeppert, “Effect of Competing Anions on the Adsorption of Arsenate and Arsenite by Ferrihydrite,” J. Environ. Qual. 29, 1422–1430 (2004).

    Article  Google Scholar 

  57. B. R. James and R. J. Bartlett, “Behavior of Chromium in Soils. 5. Fate of Organically Complexed Cr(III) Added to Soil,” Environ. Sci. Technol. 12, 169–172 (1983).

    Google Scholar 

  58. M. Kamon, H. Y. Zhang, and T. Katsumi, “Redox Effects on Heavy Metal Attenuation in Landfill Clay Liner,” Soils Found 42, 115–126 (2002).

    Google Scholar 

  59. S. R. Kanel, J.-M. Greneche, and H. Choi, “Arsenic(V) Removal from Groundwater Using Nano Scale Zero-Valent Iron As a Colloidal Reactive Barrier Material,” Environ. Sci. Technol. 40, 2045–2050 (2006).

    Article  Google Scholar 

  60. J. Kim, P. K. Jung, H. S. Moon, and C. M. Chon, “Reduction of Hexavalent Chromium by Pyrite-Rich Andesite in Different Anionic Solutions,” Environ. Geol. 42, 642–648 (2002).

    Article  Google Scholar 

  61. T. Kohn, J. T. Kenneth, A. Livi, et al., “Longevity of Granular Iron in Groundwater Treatment Processes: Corrosion Product Development,” Environ. Sci. Technol. 39, 2867–2879 (2005).

    Article  Google Scholar 

  62. H. Kondo, Y. Ishiguro, K. Ohno, et al., “Naturally Occurring Arsenic in the Groundwater in the Southern Region of Fukuoka Prefecture, Japan,” Water Res. 33, 1967–1972 (1999).

    Article  Google Scholar 

  63. K. O. Konhauser, “Diversity of Bacterial Iron Mineralization,” Earth Sci. Rev. 43, 91–121 (1998).

    Article  Google Scholar 

  64. H. Kreuzer, “Treating Metal-Contaminated Groundwater-Permeable Reactive Barrier Cleans Superfund Site,” Pollut. Eng. 32, 12–14 (2000).

    Google Scholar 

  65. J. G. Lack, S. K. Chaudhuri, S. D. Kelly, et al., “Immobilization of Radionuclides and Heavy Metals through Anaerobic Bio-Oxidation of Fe(II),” Appl. Environ. Microbiol. 68, 2704–2710 (2002).

    Article  Google Scholar 

  66. J. A. Lackovic, N. P. Nikolaidas, and G. M. Dobbs, “Inorganic Arsenic Removal Zerovalent Iron,” Environ. Eng. Sci 17, 29–39 (2000).

    Article  Google Scholar 

  67. L. Legrand, A. E. Figuigui, F. Mercier, and A. Chausse, “Reduction of Aqueous Chromate by Fe(II)/Fe(III) Carbonate Green Rust: Kinetic and Mechanistic Studies,” Environ. Sci. Technol. 38, 4587–4595 (2004).

    Article  Google Scholar 

  68. A.-K. Leuz and C. A. Johnson, “Oxidation of Sb(III) To Sb(V) by O2 and H2O2 in Aqueous Solutions,” Geochim. Cosmohim. Acta 69, 1165–1172 (2005).

    Article  Google Scholar 

  69. A.-K. Leuz, H. Monch, and C. A. Johnson, “Sorption of Sb(III) and Sb(V) to Goethite: Influence on Sb(III) Oxidation and Mobilization,” Environ. Sci. Technol. 40, 7277–7282 (2006).

    Article  Google Scholar 

  70. L. Y. Liang, N. Korte, B. N. Gu, et al., “Geochemical and Microbial Reductions Affecting the Long-Term Performance of in Situ Iron Barriers,” Adv. Environ. Res. 4, 273–286 (2000).

    Article  Google Scholar 

  71. H.-L. Lien and R. T. Wilkin, “High-Level Arsenite Removal from Groundwater by Zerovalent Iron,” Gemosphere 59, 377–386 (2005).

    Article  Google Scholar 

  72. J. Lintschinger, B. Michalke, S. Schulte-Hostede, and P. Schramel, “Studies on Speciation of Antimony in Soil Contaminated by Industrial Activity,” Int. J. Environ. Anal. Chem. 72, 11–25 (1998).

    Article  Google Scholar 

  73. J. R. Lloyd, “Microbial Reduction of Metals and Radionuclides,” FEMS Microbiol. Rev. 27, 411–425 (2003).

    Article  Google Scholar 

  74. J. R. Lloyd, J. Chesnes, S. Glasauer, et al., “Reduction of Actinides and Fission Products by Fe(III)-Reducing Bacteria,” Geomicrobiol. J. 19, 103–120 (2002).

    Article  Google Scholar 

  75. E. Lombi, R. E. Hamon, G. Wieshammer, et al., “Assessment of Use of Industrial By-Products To Remediate a Copper and Arsenic Contaminated Land,” J. Environ. Qual. 33, 902–910 (2004).

    Article  Google Scholar 

  76. D. R. Lovley, “Organic-Matter Mineralization with the Reduction of Ferric Iron—Review,” Geomicrobiol. J. 5, 375–399 (1987).

    Article  Google Scholar 

  77. D. R. Lovley, “Dissimilatory Fe(III) and Mn(IV) Reduction,” Microbiol. Rev. 55, 259–287 (1991).

    Google Scholar 

  78. D. R. Lovley, “Microbial Reduction of Iron, Manganese, and Other Metals,” Adv. Agron. 54, 175–231 (1995).

    Article  Google Scholar 

  79. D. R. Lovley, “Microbial Fe(III) Reduction in Subsurface Environments,” FEMS Microbiol. Rev. 20, 305–313 (1997).

    Article  Google Scholar 

  80. R. T. Lowson, “Aqueous Oxidation of Pyrite by Molecular Oxygen,” Chem. Rev. 82, 461–497 (1982).

    Article  Google Scholar 

  81. S. Loyaux-Lawniczak, Ph. Refait, J.-J. Ehrhardt, et al., “Trapping of Cr by Formation of Ferrigydrite During the Reduction of Chromate Ions by Fe(II)-Fe(III) Hydroxysalt Green Rust,” Environ. Sci. Technol. 34, 438–443 (2000).

    Article  Google Scholar 

  82. A. Lu, S. Zhong, J. Chen, et al., “Removal of Cr(VI) and Cr(III) from Aqueous Solutions and Industrial Wastewaters by Natural Clino-Pyrrhotite,” Environ. Sci. Technol. 40, 3064–3069 (2006).

    Article  Google Scholar 

  83. B. A. Manning, S. E. Fendorf, and S. Goldberg, “Surface Structures and Stability of Arsenic(III) on Goethite: Spectroscopic Evidence for Inner-Sphere Complexes,” Environ. Sci. Technol. 32, 2383–2388 (1998).

    Article  Google Scholar 

  84. B. A. Manning, S. Goldberg, “Modeling Competitive Adsorption of Arsenate with Phosphate and Molybdate on Oxide Minerals,” Soil Sci. Soc. Am. J. 60, 121–131 (1996).

    Article  Google Scholar 

  85. B. A. Manning, M. L. Hunt, C. Amrhein, and J. A. Yarmoff, “Arsenic(III) and Arsenic(V) Reactions with Zerovalent Iron Corrosion Products,” Environ. Sci. Technol. 36, 5455–5461 (2002).

    Article  Google Scholar 

  86. S. L. McGeehan, S. E. Fendorf, and D. V. Naylor, “Alteration of Arsenic Sorption in Flooded-Dried Soils,” Soil Sci. Soc. Am. J. 62, 828–833 (1998).

    Article  Google Scholar 

  87. M. A. McKibben and H. L. Barnes, “Oxidation of Pyrite in Low Temperature Acidic Solution: Rate Law and Surface Textures,” Geochim. Cosmochim. Acta 50, 1509–1520 (1986).

    Article  Google Scholar 

  88. N. Melitas, O. Chuffe-Moscoso, and J. Farrell, “Kinetics of Soluble Chromium Removal from Contaminated Water by Zerovalent Iron Media: Corrosion Inhibition and Passive Oxide Effects,” Environ. Sci. Technol. 35, 3948–3953 (2001).

    Article  Google Scholar 

  89. S. Mitsunobu, T. Harada, and Y. Takahashi, “Comparison of Antimony Behavior with That of Arsenic Under Various Soil Redox Conditions,” Environ. Sci. Technol. 40, 7270–7276 (2006).

    Article  Google Scholar 

  90. G. Morin, F. Juillot, C. Casiot, et al., “Bacterial Formation of Tooeleite and Mixed Arsenic (III) or Arsenic (V)-Iron (III) Gels in the Carnoules Acid Mine Drainage, France. A XANES, XRD, and SEM Study,” Environ. Sci. Technol. 37, 1705–1712 (2003).

    Article  Google Scholar 

  91. O. Carl Moses, D. K. Nordstrom, J. S. Herman, and A. L. Mills, “Aqueous Pyrite Oxidation by Dissolved Oxygen and by Ferric Iron,” Geochim. Cosmochim. Acta 51, 1561–1571 (1987).

    Article  Google Scholar 

  92. M. Mullet, S. Boursiquot, and J.-J. Ehrhardt, “Removal of Hexavalent Chromium from Solutions by Mackinawite, Tetragonal FeS,” Colloids Surf. 244, 77–85 (2004).

    Article  Google Scholar 

  93. M. Mullet, F. Demoisson, B. Humbert, et al., “Aqueous Cr(VI) Reduction by Pyrite: Speciation and Characterization of the Solid Phases by X-Ray Photoelectron, Raman and X-Ray Absorption Spectroscopes,” Geochim. Cosmochim. Acta 71, 3257–3271 (2007).

    Article  Google Scholar 

  94. R. Nickson, J. McArhtur, W. Burgess, et al., “Arsenic Poisoning of Bangladesh Groundwater,” Nature 395, 338–338 (1998).

    Article  Google Scholar 

  95. R. T. Nickson, J. M. McArhtur, P. Ravenscroft, et al., “Mechanism of Arsenic Release to Groundwater Bangladesh and West Bengal,” Appl. Geochem. 15, 403–413 (2000).

    Article  Google Scholar 

  96. D. Pactung, A. Foster, and G. Laflamme, “Speciation and Characterization of Arsenic in Ketza River Mine Tailings Using X-Ray Adsorption Spectroscopy,” Environ. Sci. Technol. 37, 2067–2074 (2003).

    Article  Google Scholar 

  97. C. H. Park, M. Keyhan, B. W. Wielinga, et al., “Purification to Homogeneity and Characterization of Novel Pseudomonas pytida Chromate Reductase,” Appl. Environ. Microbiol. 66, 1788–1795 (2000).

    Article  Google Scholar 

  98. R. R. Patterson, S. Fendorf, and M. Fendorf, “Reduction of Hexavalent Chromium by Amorphous Iron Sulfide,” Environ. Sci. Technol. 31, 2039–2044 (1997).

    Article  Google Scholar 

  99. H. D. Pedersen, D. Postma, and R. Jakobsen, “Release of Arsenic Associated with the Reduction and Transformation of Iron Oxides,” Geochim. Cosmochim. Acta 70, 4116–4129 (2006).

    Article  Google Scholar 

  100. H. R. Pfeifer, A. Gueye-Girardet, D. Reymond, et al., “Dispersion of Natural Arsenic in the Malcantone Watershed, Southern Switzerland: Field Evidence for Repeated Sorption-Desorption and Oxidation-Reduction Processes,” Geoderma 122, 205–234 (2004).

    Article  Google Scholar 

  101. D. H. Phillips, B. Gu, D. B. Watson, et al., “Performance Evolution of a Zerovalent Iron Reactive Barrier: Mineralogical Characteristics,” Environ. Sci. Technol. 34, 4169–4176 (2000).

    Article  Google Scholar 

  102. R. M. Powell, R. W. Puls, S. K. Hightower, and D. A. Sabatini, “Coupled Iron Corrosion and Chromate Reduction: Mechanisms for Subsurface Remediation,” Environ. Sci. Technol. 29, 1913–1922 (1995).

    Article  Google Scholar 

  103. A. R. Pratt, D. W. Blowes, and C. J. Ptacek, “Products of Chromate Reduction on Proposed Subsurface Remediation Material,” Environ. Sci. Technol. 31, 2492–2498 (1997).

    Article  Google Scholar 

  104. M. J. Pullin and S. E. Cabaniss, “The Effect of PH, Ionic Strength, and Iron-Fulvic Acid Interactions on the Kinetics Non-Photochemical Iron Transformations. II. The Kinetics of Thermal Reduction,” Geochim. Cosmochim. Acta 67, 4079–4089 (2003).

    Article  Google Scholar 

  105. F. Quentel, M. Filella, C. Elleouet, and C. L. Madec, “Kinetic Studies on Sb(III) Oxidation by Hydrogen Peroxide in Aqueous Solution,” Environ. Sci. Technol. 38, 2843–2848 (2004).

    Article  Google Scholar 

  106. E. J. Reardon, “Anaerobic Corrosion of Granular Iron—Measurement and Interpretation of Hydrogen Evolution Rates,” Environ. Sci. Technol. 29, 2936–2945 (1995).

    Article  Google Scholar 

  107. Y. Roh, V. Lee, and M. P. Elless, “Characterization of Corrosion Products in the Permeable Reactive Barriers,” Environ. Geol. 40, 184–194 (2000).

    Article  Google Scholar 

  108. J. N. Rooney-Varga, R. T. Anderson, J. L. Fraga, et al., “Microbial Communities Associated with Anaerobic Benzene Degradation in a Petroleum-Contaminated Aquifer,” Appl. Environ. Microbiol. 65, 3056–3063 (1999).

    Google Scholar 

  109. T. S. Rotting, J. Cama, C. Ayora, et al., “Use of Caustic Magnesia To Remove Cadmium, Nickel, and Cobalt from Water in Passive Treatment Systems: Column Experiments,” Environ. Sci. Technol. 40, 6438–6443 (2006).

    Article  Google Scholar 

  110. B. M. Sass and D. Rai, “Solubility of Amorphous Chromium(III)-Iron(III) Hydroxide Solid Solution,” Inorg. Chem. 26, 2228–2232 (1987).

    Article  Google Scholar 

  111. A. C. Scheinost, A. Rossberg, D. Vantelon, et al., “Quantitative Antimony Speciation in Shooting-Range Soils by EXAFS Spectroscopy,” Geochim. Cosmochim. Acta 70, 3299–3312 (2006).

    Article  Google Scholar 

  112. Y. Shevah and M. Waldman, “In Situ and On-Site Treatment of Groundwater—Technical Report,” Pure Appl. Chem. 67, 1549–1561 (1995).

    Article  Google Scholar 

  113. T. E. Shokes and G. Moller, “Removal of Dissolved Heavy Metals from Acid Rock Drainage Using Iron Metal,” Environ. Sci. Technol. 33, 282–287 (1999).

    Article  Google Scholar 

  114. L. L. Skovbjerg, S. L. S. Stipp, S. Utsunomiya, and R. C. Ewing, “The Mechanisms of Reduction of Hexavalent Chromium by Green Rust Sodium Sulphate: Formation of Cr-Goethite,” Geochim. Cosmochim. Acta 70, 3582–3592 (2006).

    Article  Google Scholar 

  115. P. L. Smedley and D. G. Kinniburgh, “A Review of Source, Behavior and Distribution of Arsenic in Natural Waters,” Appl. Geochem. 17, 517–568 (2002).

    Article  Google Scholar 

  116. P. Steinmann and W. Shotyk, “Chemical Composition, pH and Redox State of Sulfur and Iron in Complete Vertical Porewater Profiles from Two Sphagnum Peat Bogs, Jura Mountains, Switzerland,” Geochim. Cosmochim. Acta 61, 1143–1163 (1997).

    Article  Google Scholar 

  117. C. Su and R. W. Puls, “Arsenate and Arsenite Removal by Zerovalent Iron: Kinetics, Redox Transformation, and Implications for In Situ Groundwater Remediation,” Environ. Sci. Technol. 35, 4562–4568 (2001).

    Article  Google Scholar 

  118. R. N. Summers, N. R. Guise, D. D. Smirk, and K. J. Summers, “Bauxite Residue (Red Mud) Improves Pasture Growth on Sandy Soils in Western Australia,” Aust. J. Soil Res. 34, 569–581 (1996).

    Article  Google Scholar 

  119. Y. Takahashi, R. Minamikawa, H. K. Hattori, et al., “Arsenic Behavior in Paddy Fields During the Cycle of Flooded and Non-Flooded Periods,” Environ. Sci. Technol. 38, 1038–1044 (2004).

    Article  Google Scholar 

  120. M. Takaoka, S. Fukutani, T. Yamamoto, et al., “Determination of Chemical Form of Antimony in Contaminated Soil Around a Smelter Using X-Ray Absorption Fine Structure,” Anal. Sci. 21, 769–773 (2005).

    Article  Google Scholar 

  121. H. Tamura, K. Goto, and M. Nagayama, “Effect of Ferric Hydroxide on Oxygenation of Ferrous-Ions in Neutral Solutions,” Corros. Sci. 16, 197–207 (1976).

    Article  Google Scholar 

  122. R. W. Taylor, S. Shen, W. F. Bleam, S.-I. Tu, “Chromate Removal by Dithionite-Reduced Clays: Evidence from Direct X-Ray Adsorption Near Edge Spectroscopy (XANES) of Chromate Reduction at Clay Surfaces,” Clays Clay Minerals 48, 648–654 (2000).

    Article  Google Scholar 

  123. P. Thanabalasingam and W. F. Pickering, “Specific Sorption of Antimony(III) by the Hydrous Oxides of Fe, Mn, and Al,” Water, Air, Soil, Pollut. 49, 175–185 (1990).

    Article  Google Scholar 

  124. M. Tighe, P. Lockwood, and S. Wilson, “Adsorption of Antimony(V) by Floodplain Soils, Amorphous Iron(III) Hydroxide and Humic Acid,” J. Environ. Monit. 7, 1177–1185 (2005).

    Article  Google Scholar 

  125. E. Tipping, C. Rey-Castro, S. E. Bryan, and J. Hamilton-Taylor, “Al(III) and Fe(III) Binding by Humic Substances in Freshwaters, and Implications for Trace Metal Speciation,” Geochim. Cosmochim. Acta 66, 3211–3224 (2002).

    Article  Google Scholar 

  126. A. Van Geen, J. Rose, S. Thoral, et al., “Decoupling of As and Fe Release to Bangladesh Groundwater under Reducing Conditions. Part II: Evidence from Sediment Incubations,” Geochim. Cosmochim. Acta 68, 3475–3486 (2004).

    Article  Google Scholar 

  127. D. J. Vaughan and A. R. Lennie, “The Iron Sulfide Minerals: Their Chemistry and Role in Nature,” Sci. Prog. 75, 371–388 (1991).

    Google Scholar 

  128. M. Villalobos and B. M. Tebo, “Introduction: Advances in the Geomicrobiology and Biogeochemistry of Manganese and Iron Oxidation,” Geomicrobiol. J. 22, 77–78 (2005).

    Article  Google Scholar 

  129. G. P. Warren and B. J. Alloway, “Reduction of Arsenic Uptake by Lettuce with Ferrous Sulfate Applied to Contaminated Soil,” J. Environ. Qual. 32, 767–772 (2003).

    Article  Google Scholar 

  130. B. Wehrli and W. Stumm, “Oxygenation of Vanadyl(IV)—Effect of Coordinated Surface Hydroxyl-Groups and OH,” Langmuir 4, 753–768 (1988).

    Article  Google Scholar 

  131. B. Wielinga, B. Bostick, C. M. Hansel, et al., “Inhibition of Bacterially Promoted Uranium Reduction: Ferric (Hydr)Oxides as Competitive Electron Acceptors,” Environ. Sci. Technol. 34, 2190–2195 (2000).

    Article  Google Scholar 

  132. B. Wielinga, M. M. Mizuba, C. M. Hansel, and S. Fendorf, “Iron Promoted Reduction of Chromate by Dissimilatory Iron-Reduction Bacteria,” Environ. Sci. Technol. 35, 522–527 (2001).

    Article  Google Scholar 

  133. R. T. Wilkin and M. S. McNeil, “Laboratory Evaluation of Zerovalent Iron to Treat Impacted by Acid Mine Drainage,” Chemosphere 53, 715–725 (2003).

    Article  Google Scholar 

  134. R. T. Wilkin, R. W. Puls, and G. W. Sewell, “Long-Term Performance of Permeable Reactive Barrier Using Zero-Valent Iron: Geochemical and Microbiological Effects,” Ground Water 41, 493–503 (2003).

    Article  Google Scholar 

  135. R. T. Wilkin, C. Su, R. G. Ford, and C. T. Paul, “Chromium-Removal Processes During Groundwater Remediation by Zerovalent Iron Permeable Reactive Barrier,” Environ. Sci. Technol. 39, 4599–4605 (2005).

    Article  Google Scholar 

  136. A. G. B. Williams and M. M. Scherer, “Kinetics of Cr(VI) Reduction by Carbonate Green Rust,” Environ. Sci. Technol. 35, 3488–3494 (2001).

    Article  Google Scholar 

  137. Y. Wu, L. D. Sleter, and N. Korte, “Low Frequency Electrical Properties of Corroded Iron Barrier Cores,” Environ. Sci. Technol. 40, 2254–2261 (2006).

    Article  Google Scholar 

  138. J. K. Yang, M. O. Barnett, P. M. Jardine, et al., “Adsorption, Sequestration, and Bioaccessibility of As(V) in Soils,” Environ. Sci. Technol. 36, 4562–4569 (2002).

    Article  Google Scholar 

  139. J. M. Zachara, G. K. Fredrickson, S. C. Smith, and P. L. Gassman, “Solubilization of Fe(III) Oxide-Bound Trace Metals by Dissimilatory Fe(III) Reducing Bacterium,” Geochim. Cosmochim. Acta 65, 75–93 (2001).

    Article  Google Scholar 

  140. J. M. Zachara, R. K. Kukkadapu, J. K. Fredrickson, et al., “Biomineralization of Poorly Crystalline Fe(III) Oxides by Dissimilatory Metal Reducing Bacteria (DMRB),” Geomicrobiol. J. 19, 179–207 (2002).

    Article  Google Scholar 

  141. J. M. Zachara, S. C. Smith, and G. K. Fredrickson, “The Effect of Biogenic Fe(II) on the Stability and Sorption of Co(II)EDTA(2-) To Goethite and Subsurface Sediment,” Geochim. Cosmochim. Acta 64, 1345–1362 (2000).

    Article  Google Scholar 

  142. W. X. Zhang, “Nano Scale Iron Particle for Environmental Remediation: An Overview,” J. Nanopart. Res. 5, 323–332 (2003).

    Article  Google Scholar 

  143. Y. Zheng, M. Stute, A. Van Geen, et al., “Redox Control of Arsenic Mobilization in Bangladesh Groundwater,” Appl. Geochem. 19, 201–214 (2004).

    Article  Google Scholar 

  144. J. Zobrist, P. R. Dowdle, J. A. Davis, and R. S. Oremland, “Mobilization of Arsenite by Dissimilatory Reduction of Adsorbed Arsenate,” Environ. Sci. Technol. 34, 4747–4753 (2000).

    Article  Google Scholar 

  145. A. I. Zouboulis, K. A. Kydros, and K. A. Matis, “Removal of Toxic Metal Ions from Solutions Using Industrial Solid By-Products,” Water Res. 27, 83–93 (1993).

    Google Scholar 

  146. A. I. Zouboulis, K. A. Kydros, and K. A. Matis, “Removal of Hexavalent Chromium Anions from Solutions by Pyrite Fines,” Water Res. 29, 1755–1760 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Vodyanitskii.

Additional information

Original Russian Text © Yu.N. Vodyanitskii, 2010, published in Pochvovedenie, 2010, No. 5, pp. 558–572.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vodyanitskii, Y.N. The role of iron in the fixation of heavy metals and metalloids in soils: a review of publications. Eurasian Soil Sc. 43, 519–532 (2010). https://doi.org/10.1134/S1064229310050054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229310050054

Keywords

Navigation