Skip to main content
Log in

CO2 emission from the surface of dark gray forest soils of the forest steppe and sandy soddy-podzolic soils of the southern taiga

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Studies performed on dark gray loamy forest soils in an oak forest in the southern forest steppe and on sandy soddy-podzolic soil in a pine forest in the southern taiga showed that the annual emission of CO2 from the soil surface in the pine forest was 16.3 t CO2/ha, including 10.1 t CO2/ha due to root respiration and 6.2 t CO2/ha due to soil microbial respiration. In the southern forest steppe, the corresponding values were 17.8 t CO2/ha due to root respiration at the optimum water content (20%) and 28.3 t CO2/ha due to soil microbial respiration. With the insufficient soil water content (12.5%), 10.3 and 17.8 t CO2/ha were due to root respiration and soil microbial respiration, respectively. Under strong drought conditions (water content of 10%), the emission of CO2 decreased to 8.2 and 16.3 t/ha due to root respiration and soil microbial respiration, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. K. Golovko, “System of Indices to Study the Role of Respiration in Plant Productivity,” Fiziol. Rastenii 32(5), 1004–1013 (1985).

    Google Scholar 

  2. G. A. Zavarzin, D. G. Zvyagintsev, L. O. Karpachevskii, and B. G. Rozanov, “Interaction between Soil and Atmosphere,” in Interaction between Soil and Atmospheric Air (Izd-vo Mosk. Gos. Univ., Moscow, 1985), pp. 35–47 [in Russian].

    Google Scholar 

  3. L. A. Ivannikova and N. A. Semenova, “Daily and Seasonal Dynamics of the CO2 Emission from Gray Forest Soil,” Pochvovedenie, No. 1, 134–139 (1988).

  4. L. O. Karpachevskii, Forest and Forest Soils (Lesn. prom-st’, Moscow, 1981) [in Russian].

    Google Scholar 

  5. K. I. Kobak, Biotic Components of the Carbon Cycle (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  6. K. I. Kobak, “Carbon Dioxide in the Air as a Characteristic of the Atmosphere of a Forest Biogeocenosis,” in Illumination Regime, Photosynthesis, and Productivity of Forest (Nauka, Moscow, 1967), pp. 180–199 [in Russian].

    Google Scholar 

  7. I. F. Komissarova, “Emission of CO2 from Soils of Forest Biogeocenoses in the Eastern Sikhote Alin Range,” Pochvovedenie, No. 5, 100–108 (1986).

  8. A. A. Larionova, L. N. Rozanova, T. S. Demkina, et al., “Annual Emission of CO2 from Gray Forest Soils,” Pochvovedenie, No. 1, 72–80 (2001) [Eur. Soil Sci. 34 (1), 61–68 (2001)].

  9. A. A. Larionova, D. V. Sapronov, V. O. Lopes de Gerenyu, et al., “Contribution of Plant Root Respiration to the CO2 Emission from Soil,” Pochvovedenie, No. 10, 1248–1257 (2006) [Eur. Soil Sci. 39 (10), 1127–1135 (2006)].

  10. V. V. Lebedev, “Determination of CO2 Fluxes in Forest Phytocenoses,” Lesovedenie, No. 5, 26–32 (1979).

  11. V. O. Lopes de Gerenyu, I. N. Kurganova, L. N. Rozanova, and V. N. Kudeyarov, “Annual Emission of Carbon Dioxide from Soils of the Southern Taiga Zone of Russia,” Pochvovedenie, No. 9, 1045–1059 (2001) [Eur. Soil Sci. 34 (9), 931–944 (2001)].

  12. I. S. Malkina, A. M. Yakshina, and Yu. L. Tsel’niker, “Relationships between the CO2 Emission by Oak Stems and Gas-Exchange Processes in Oak Leaves,” Fiziol. Rastenii 32(4), 769–776 (1985).

    Google Scholar 

  13. V. V. Mamaev, “Daily Changes in the CO2 Emission Near Root Fibrils of Pine and Birch under Natural Conditions,” Lesovedenie, No. 3, 33–38 (1983).

  14. V. P. Mina, “Intensity of the CO2 Production and Its Distribution in Soil Air of Leached Chernozems in Dependence on the Plant Cover Composition,” Tr. Labor. Lesoved. AN SSSR 1, 127–144 (1960).

    Google Scholar 

  15. A. G. Molchanov, “Budget of Carbon Dioxide in a Pine Stand of Southern Taiga,” Lesovedenie, No. 1, 47–53 (1990).

  16. A. G. Molchanov, “The Emission of Carbon Dioxide from the Ground Cover Surface in Pine Stands,” in Experiment and Mathematical Modeling in the Study of Forest and Bog Biocenoses (Materials of the All-Union Conf., August 4–6, 1987, Zapadnaya Dvina, Kalinin Oblast) (Moscow, 1987), pp. 250–253 [in Russian].

  17. A. G. Molchanov, “Photosynthetic Production of Oak Stands under Different Conditions of Water Supply,” Fiziol. Rastenii 52(4), 522–531 (2005).

    Google Scholar 

  18. V. N. Smirnov, “On the Interaction between the CO2 Production and the Fertility of Forest Soils,” Pochvovedenie, No. 6, 21–31 (1955).

  19. A. S. Tulina, Ya. V. Kuzyakov, T. V. Kuznetsova, et al., “Assessment of the Rhizosphere Respiration and the Microbial Decomposition of Soil Organic Matter by the Method of Isolated Nutrition of Plants upon Different Contents of Available Nitrogen in Soil,” in Emission and Sink of Greenhouse Gases in Northern Eurasia (ONTI PNTs RAN, Pushchino, 2004), pp. 127–131 [in Russian].

    Google Scholar 

  20. A. I. Utkin, “Biological Productivity of Forests. Methods of Results,” in Forestry and Forest Science (Itogi Nauki i Tekhnikiki), (VINITI, Moscow, 1975), Vol. 1, pp. 9–190 [in Russian].

    Google Scholar 

  21. A. I. Utkin, I. F. Kaplina, and A. G. Molchanov, “Biological Productivity of 40-Year-Old High-Productive Pine and Birch Stands,” Lesovedenie, No. 3, 28–36 (1984).

  22. B. Bond-Lamberty, C. Wang, and S. T. Gower, “Contribution of Root Respiration to Soil Surface CO2 Flux in a Boreal Black Spruce Chronosequence,” Tree Physiol. 24, 1387–1395 (2004).

    Google Scholar 

  23. J. Brossaud and M. V. Marek, “Field Measurements of Carbon Dioxide Efflux from Soil and Woody Tissues in Norway Spruce Forest Stand,” Ecologia (Bratislava) 19(3), 245–250 (2000).

    Google Scholar 

  24. E. A. Davidson, E. Belk, and R. D. Boone, “Soil Water Content and Temperature as Independent or Confounded Factors Controlling Soil Respiration in a Temperate Mixed Hardwood Forest,” Global Change Biol. 4, 217–227 (1998).

    Article  Google Scholar 

  25. F. E. Eidman, “Untersuchungen über die Wurzelatmung and Transpiration unsere Hauptholzarten,” Schr. Akad. Dt. Forstwiss 5, 144 (1943).

    Google Scholar 

  26. N. T. Edwards and P. Sollins, “Continuous Measurement of Carbon Dioxide Evolution from Partitioned Forest Floor Components,” Ecology 54(2), 406–412 (1973).

    Article  Google Scholar 

  27. H. Hager, “Kohlendioxyd-Konzentrationen-Flusse und Bilanzen in Einem Fichtenhochwald,” Munchener Universitats-Schrifter, 183 (1975).

  28. P. J. Hanson, N. T. Edwards, C. T. Garten, and J. A. Andrews, “Separating Root and Soil Microbial Contributions to Soil Respiration: A Review of Methods and Observations,” Biogeochemistry 48, 115–146 (2000).

    Article  Google Scholar 

  29. E. Hirano, H. Kim, and Y. Tanaka, “Long-Term Half-Hourly Measurement of Soil CO2 Concentration and Soil Respiration in a Temperate Deciduous Forest,” J. Geophys. Res. 108, 7–13, 2003.

    Article  Google Scholar 

  30. Gao-Ming Jiang, Chun-Mei Qu, “Zhiwu Shengtai Xuebao,” Acta Phytoecol. Sin. 24(2), 204–208 (2005).

    Google Scholar 

  31. T. Kawahara, “Carbon Cycling in Forest Ecosystems,” Bull. For. For. Prod. Res. Inst. 334, 21–53 (1985).

    Google Scholar 

  32. M. B. Lavigne, R. J. Foster, and G. Goodine, “Seasonal and Annual Changes in Soil Respiration in Relation to Soil Temperature, Water Potential and Trenching,” Tree Physiol., No. 4, 415–424 (2004).

  33. V. Lutsar and K. Pork, “Carbon Dioxide Evaluation from the Spruce Hardwood Forest Floor,” in Spruce Forest Ecosystem Structure and Ecology (Academy of Sciences of the Estonian SSR, Tartu, 1977), pp. 143–154.

    Google Scholar 

  34. G. Minderman and J. Vulto, “Carbon Dioxide Production by Tree Roots,” Pedobiologia 13, 337–343 (1973).

    Google Scholar 

  35. Ohashi Mizue, Gyokusen Koichiro, Saito Akira, “Contribution of Root Respiration to Total Soil Respiration in a Japanese Cedar (Cryptomeria japonica D.Don) Artificial Forest,” Ecol. Res. 15, 323–333 (2000).

    Article  Google Scholar 

  36. J. W. Raich and A. Tufekcioglu, “Vegetation and Soil Respiration: Correlations and Controls,” Biogeochemistry 48, 71–90 (2000).

    Article  Google Scholar 

  37. D. A. Sampson, I. A. Jansssens, and R. Cailemans, “Simulated Soil CO2 Efflux and Net Ecosystem Exchange in a 70-Year-Old Belgian Scots Pine Stand Using the Process Model SECRETS,” Ann. For. Sci 58, 31–46 (2001).

    Article  Google Scholar 

  38. J. S. Sing and S. R. Gupta, “Plant Decomposition and Soil Respiration in Terrestrial Ecosystems,” Bot. Rev. 43(4), 449–528 (1977).

    Article  Google Scholar 

  39. V. Thierron and H. Laudelout, “Contribution of Root Respiration to Total CO2 Efflux from the Soil of a Deciduous Forest,” Can. J. For. Res. 26(7), 1142–1148 (1996).

    Article  Google Scholar 

  40. L. A. Tufekcioglu, J. W. Raich, T. M. Isenhart, and R. C. Schultz, “Soil Respiration within Riparian Buffers and Adjacent Crop Fields,” Plant and Soil 229, 117–124 (2001).

    Article  Google Scholar 

  41. S. E. Vompersky and M. V. Smagina, “The Impact of Hydroreclamation of Forest on Peat Accumulation,” Proc. 7th Intern. Peat Congress, Dublin, Ireland, 1984, Vol. 4, pp. 86–95.

  42. X. Z. Wang, P. S. Curtis, and C. S. Vogel, “Effect of Soil Fertility and Atmospheric CO2 Enrichment on Leaf, Stem and Root Dark Respiration of Populus tremuloides,” Pedosphere 11(3), 199–208 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Molchanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molchanov, A.G. CO2 emission from the surface of dark gray forest soils of the forest steppe and sandy soddy-podzolic soils of the southern taiga. Eurasian Soil Sc. 42, 1470–1478 (2009). https://doi.org/10.1134/S1064229309130079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229309130079

Keywords

Navigation