Skip to main content
Log in

Nutrient budget in ecosystems

  • On the Centennial Anniversary of the Birth of R.V. Kovalev
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Methods to calculate nutrient budgets in forest and grassland ecosystems are analyzed on the basis of a large number of published materials and original data. New estimates of the belowground production in forest ecosystems with due account for the growth of fine roots are suggested. Nutrient retranslocation from senescent plant tissues to growing plant tissues and nutrient leaching from the forest canopy are discussed. The budgets of major nutrients (N, P, K, and Ca) in tundra, forest, and steppe ecosystems are calculated. Nutrient cycles in two forest ecosystems—a coniferous stand dominated by Picea abies and a broad-leaved stand dominated by Quercus robur—are analyzed in detail. It is shown that the more intensive turnover of nutrients in the oak stand is also characterized by a more closed character of the nutrient cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Bazilevich, Biological Productivity of Ecosystems in the Northern Eurasia (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  2. N. I. Bazilevich and N. V. Semenyuk, “Dynamic Budget of Chemical Elements in Meadow Steppe,” Pochvovedenie, No. 7, 57–69 (1986).

  3. N. I. Bazilevich, A. A. Titlyanova, V. V. Smirnov, et al., Methods for Studying the Biological Cycle in Different Natural Zones (Mysl', Moscow, 1978) [in Russian].

    Google Scholar 

  4. N. I. Bazilevich and T. E. Shitikova, “Biogeochemistry of Some Forest Landscapes in Different Temperature Zones,” Pochvovedenie, No. 7, 11–23 (1989).

  5. S. V. Zonn, L. O. Karpachevskii, and V. V. Stefin, Forest Soils of Kamchatka (Akad. Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  6. N. I. Kazimirov, A. D. Volkov, S. S. Zyabchenko, et al., Matter and Energy Exchange in Pine Forests of the Northern Europe (Nauka, Leningrad, 1977) [in Russian].

    Google Scholar 

  7. N. I. Kazimirov, R. M. Morozova, and V. K. Kulikova, Organic Matter and Element Fluxes in Birch Forests of the Middle Taiga (Nauka, Leningrad, 1978) [in Russian].

    Google Scholar 

  8. R. K. Kylli, “Dynamics of Fallen Leaves in Forests on Brown and Pseudopodzolic Soils,” Sb. Nauchn. Tr. Est. S.-Kh. Akad., No. 100, 82–116 (1975).

  9. K. N. Manakov, Productivity and Biological Cycle in Tundra Biogeocenoses of the Kola Peninsula (Nauka, Leningrad, 1972) [in Russian].

    Google Scholar 

  10. K. N. Manakov and V. V. Nikonov, “Biological Cycle of Mineral Elements and Pedogenesis in Biogeocenoses of Three Mountain-Vegetation Zones,” in Pedogenesis in Biogeocenoses of Khibiny Mountains (Apatity, 1979), pp. 65–93 [in Russian].

  11. A. Ya. Orlov, “Method for Determining the Mass of Tree Roots in Forests and the Calculation of the Annual Organic Matter Increment in the Forest Soil Layer,” Lesovedenie, No. 1, 64–70 (1967).

  12. P. S. Pasternak, “Interaction between Forest and Soil in Beech Plantations,” Lesovodstvo i Agrolesomelioratsiya, No. 12, 3–11 (1967).

  13. V. V. Ponomareva, T. A. Rozhnova, and N. S. Sotnikova, “Biological Cycle in Coniferous Forests of Humid Climate from the Results of Lysimetric Studies,” in Biological Productivity and the Turnover of Chemical Elements in Plant Communities (Nauka, Leningrad, 1971), pp. 220–226 [in Russian].

    Google Scholar 

  14. Plant Productivity in the Arid Zone of Asia (Nauka, Leningrad, 1977) [in Russian].

  15. N. P. Remezov, “Dynamics of Interaction of Broad-Leaved Forest with the Soil,” in Problems of Soil Science (Akad. Nauk SSSR, Moscow, 1962), pp. 101–147 [in Russian].

    Google Scholar 

  16. Zh. A. Rupasova, “Exchange of Chemical Elements in Forest Cenoses,” in Structure, Functioning, and Evolution of the System of Biogeocenoses in Baraba (Nauka, Novosibirsk, 1976), Vol. 2, pp. 342–351 [in Russian].

    Google Scholar 

  17. E. M. Samoilova, “Some Features of the Biological Cycle of Chemical Elements in Oak Forest Related to Its Parcellar Structure,” in Biological Productivity and the Turnover of Chemical Elements in Plant Communities (Nauka, Leningrad, 1971), pp. 245–248 [in Russian].

    Google Scholar 

  18. E. A. Sidorovich, Zh. A. Rupasova, and E. G. Bus'ko, Functioning of Forest Phytocenoses under Anthropogenic Loads (Nauka, Minsk, 1985) [in Russian].

    Google Scholar 

  19. Structure, Functioning, and Evolution of the System of Biogeocenoses in Baraba (Nauka, Novosibirsk, 1976), Vol. 2 [in Russian].

  20. A. A. Titlyanova, Biological Cycle of Carbon in Herbaceous Biogeocenoses (Nauka, Novosibirsk, 1977) [in Russian].

    Google Scholar 

  21. A. A. Titlyanova, Biological Cycle of Nitrogen and Ash Elements in Herbaceous Biogeocenoses (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  22. A. A. Titlyanova, N. P. Kosykh, N. P. Mironycheva-Tokareva, and I. P. Romanova, Underground Organs of Plants in Herbaceous Ecosystems (Nauka, Novosibirsk, 1996) [in Russian].

    Google Scholar 

  23. V. A. Usol'tsev and S. V. Zalesov, Methods of Determining the Biological Productivity of Plantations (Yekaterinburg, 2005) [in Russian].

  24. G. I. Ushakova, “Removal of Chemical Elements with Lysimetric Solutions from the Litter Horizon,” in Pedogenesis in Biogeocenoses of Khibiny Mountains (Apatity, 1979), pp. 94–113 [in Russian].

  25. B. S. Ausmus, J. M. Ferris, D. E. Reichle, and C. Williams, “The Role of the Primary Consumers in Forest Root Dynamics,” in The Belowground Ecosystem: A Synthesis of Plant-Associated Processes, Ed. by J. K. Marshall, Range Sci. Dep. Sci. Series (Colorado, 1977), Vol. 26, pp. 261–265.

  26. N. I. Bazilevich and A. A. Titlyanova, “Comparative Studies of Ecosystem Function,” in Grasslands, System Analysis, and Man (Cambridge Univ. Press, Cambridge, 1980), pp. 713–759.

    Google Scholar 

  27. W. Dress and R. Boerner, “Root Dynamics of Southern Oak-Hickory Forests: Influences of Prescribed Fire and Landscape Position,” Can. J. Forest Res. 31, 644–653 (2001)

    Article  Google Scholar 

  28. N. T. Edwards, W. F. Harris, and H. H. Shugart, “Carbon Cycling in Deciduous Forests,” in The Belowground Ecosystem: A Synthesis of Plant-Associated Processes, Ed. by J. K. Marshall, Range Sci. Dep. Sci. Series (Colorado, 1977), Vol. 26, pp. 153–159.

  29. E. Ehwald, F. Grunert, W. Schulz, and E. Vetterlein, “Zur Okologie von Kiefern-Buchen-Mischbestanden,” Arch. Forstwes. 10, 4–6 (1961).

    Google Scholar 

  30. C. P. Giardina, M. D. Coleman, J. E. Hancock, et al., “The Response of Belowground Carbon Allocation in Forests to Global Change,” in Tree Species Effects on Soils: Implications for Global Change: NATO Sci. Ser. IV: Earth and Environmental Science 55, 119–154 (2005).

    Article  Google Scholar 

  31. R. Hendrick and K. Pregitzer, “The Dynamics of Fine Root Length, Biomass, and Nitrogen Content in Two Northern Hardwood Ecosystems,” Can. J. Forest Res. 23, 2507–2520 (1993).

    Article  Google Scholar 

  32. D. W. Johnson and G. S. Henderson, “Terrestrial Nutrient Cycling,” in Analysis of Biogeochemical Cycling Processes in Walker Branch Watershed (Springer, New York, 1989), pp. 233–295.

    Google Scholar 

  33. T. Lin, S. P. Hamburg, Y. Hsia, et al., “Base Cation Leaching from the Canopy of a Subtropical Rainforest in Northeastern Taiwan,” Can. J. Forest Res. 31, 1156 (2001).

    Article  Google Scholar 

  34. H. A. Madgwick and J. D. Ovington, “The Chemical Composition of Precipitation in Adjacent Forest and Open Plots,” J. Forestry 32(1), 15–25 (1959).

    Google Scholar 

  35. N. G. McDowel, N. J. Balster, and J. D. Marshall, “Belowground Carbon Allocation of Rocky Mountain Douglas Fir,” Can. J. Forest Res. 31, 1425–1436 (2001).

    Article  Google Scholar 

  36. K. P. Singh and R. P. Singh, “Seasonal Variation in Biomass and Energy of Small Roots in Tropical Dry Deciduous Forests, Varanasi, India,” Oikos 37, 88–92 (1981).

    Article  Google Scholar 

  37. S. M. Sundarapandian and P. S. Swamy, “Variation in Fine-Root Biomass and Net Primary Productivity Due to Conversion of Tropical Forests into Plantation Crops and Agroecosystems, in Root Demographics and Their Efficiencies in Sustainable Agriculture, Grasslands, and Forest Ecosystems, Ed. by J. E. Box (Kluwer, Dordrecht, 1998), pp. 369–382.

    Google Scholar 

  38. M. Szabo and Cs. Csortos, “A Study of the Nutrient Content of Canopy through Fall in a Oak Forest (Quercetum petrae-cerris) Measured for One Year,” Acta Bot. Acad. Sci. Hung. 21, 419–432 (1975).

    Google Scholar 

  39. S. K. Tripathi, K. P. Singh, and P. K. Singh, “Temporal Changes in Spatial Pattern of Fine-Root Mass and Nutrient Concentrations in Indian Bamboo Savanna,” Appl. Veg. Sci. 2, 229–238 (1999).

    Article  Google Scholar 

  40. K. A. Vogt, D. J. Vogt, and J. Bloomfield, “Analysis of Some Direct and Indirect Methods for Estimating Root Biomass and Production of Forests at an Ecosystem Level,” in Root Demographics and Their Efficiencies in Sustainable Agriculture, Grasslands, and Forest Ecosystems, Ed. by J. E. Box (Kluwer, Dordrecht, 1998), pp. 687–721.

    Google Scholar 

  41. R. H. Warning and S. W. Runing, Forest Ecosystems: Analysis at Multiply Scales (Academic, San Diego, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Titlyanova.

Additional information

Original Russian Text © A.A. Titlyanova, 2007, published in Pochvovedenie, 2007, No. 12, pp. 1422–1430.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titlyanova, A.A. Nutrient budget in ecosystems. Eurasian Soil Sc. 40, 1270–1278 (2007). https://doi.org/10.1134/S1064229307120034

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229307120034

Keywords

Navigation