Skip to main content

The Response of Belowground Carbon Allocation in Forests to Global Change

  • Conference paper
Tree Species Effects on Soils: Implications for Global Change

Abstract

Belowground carbon allocation (BCA) in forests regulates soil organic matter formation and influences biotic and abiotic properties of soil such as bulk density, cation exchange capacity, and water holding capacity. On a global scale, the total quantity of carbon allocated belowground by terrestrial plants is enormous, exceeding by an order of magnitude the quantity of carbon emitted to the atmosphere through combustion of fossil fuels. Despite the importance of BCA to the functioning of plant and soil communities, as well as the global carbon budget, controls on BCA are relatively poorly understood. Consequently, our ability to predict how BCA will respond to changes in atmospheric greenhouse gases, climate, nutrient deposition, and plant community composition remains rudimentary. In this synthesis, we examine BCA from three perspectives: coarse-root standing stock, belowground net primary production (BNPP), and total belowground carbon allocation (TBCA). For each, we examine methodologies and methodological constraints, as well as constraints of terminology. We then examine available data for any predictable variation in BCA due to changes in species composition, mean annual temperature, or elevated CO2 in existing Free Air CO2 Exposure (FACE) experiments. Finally, we discuss what we feel are important future directions for belowground carbon allocation research, with a focus on global change issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams M A, Ineson P, Binkley D, Cadisch G, Tokuchi N, Scholes M, Hicks K and Chadwick M 2004 Soil functional responses to excess N inputs at global scales. Ambio In press.

    Google Scholar 

  • Albaugh T J, Allen H L, Dougherty P M, Kress L W and King J S 1998 Leaf area and above-and belowground growth responses of loblolly pine to nutrient and water additions. For. Sci. 44, 317–328.

    Google Scholar 

  • Allison P D 1995 Survival analysis using SAS: A practical guide. SAS Institute Inc., Cary, NC, USA. 292 pp.

    Google Scholar 

  • Bashkin M A and Binkley D 1998 Changes in soil carbon following afforestation in Hawaii. Ecology 79, 828–833.

    Google Scholar 

  • Berntson G M and Bazzaz F A 1996 The allometry of root production and loss in seedlings of Acer rubrum (Aceraceae) and Betula papyrifera (Betulaceae): Implications for root dynamics in elevated CO2. Am. J. Bot. 83, 608–616.

    Google Scholar 

  • Bolte A, Rahmann T, Kuhr M, Pogoda P, Murach D and v Gadow K 2004 Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.) Plant Soil 264, 1–11.

    CAS  Google Scholar 

  • Bond-Lamberty, Chuankuan B W and Gower S T 2004 A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biol. 10, 1756–1766.

    Google Scholar 

  • Bonfante-Fasolo P 1986 Anatomy and morphology of VA mycorrhizae. In VA Mycorrhiza. Eds. C Powell and D Bagyaraj. pp. 2–33. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Burke M K and Chambers J L 2003 Root dynamics in bottomland hardwood forests of the southeastern United States Coastal Plain. Plant Soil 250, 141–153.

    CAS  Google Scholar 

  • Burton A J and Pregitzer K S 2003 Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine. Tree Physiol. 23, 273–280.

    PubMed  Google Scholar 

  • Burton A J, Pregitzer K S, Ruess R W, Hendrick R L and Allen M F 2002 Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes. Oecologia 131, 559–568.

    Google Scholar 

  • Binkley D and Resh S C 1999 Rapid changes in soils following Eucalyptus afforestation in Hawaii. Soil Sci. Soc. Am. J. 63, 222–225.

    CAS  Google Scholar 

  • Caldwell MM, Virginia RA. 1991. Root systems. In Plant physiological ecology: field methods and instrumentation. R W Pearcy, J Ehleringer, H A Mooney and P W Rundel. pp. 367–398. Chapman and Hall, London.

    Google Scholar 

  • Cannell M G R and Dewar R C 1994 Carbon allocation in trees: a review of concepts for modeling. Adv. Ecol. Res. 25, 59–104.

    Google Scholar 

  • Clark D A, Brown S, Kicklighter D W, Chambers J Q, Thomlinson J R, Ni J and Holland E A. 2001a Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol. Appl. 11, 371–384.

    Google Scholar 

  • Clark D A, Brown S, Kicklighter D W, Chambers J Q, Thomlinson J R, Ni J and Holland E A 2001b NPP Tropical Forest: Consistent Worldwide Site Estimates. 1967–1999. Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. http://www.daac.ornl.gov.

    Google Scholar 

  • Coleman M D, Dickson R E and Isebrands J G 2000 Contrasting fine-root production, survival and soil CO2 efflux in pine and poplar plantations. Plant Soil 225, 129–139.

    CAS  Google Scholar 

  • Coleman M D, Friend A L and Kern C C 2004 Carbon Allocation and Nitrogen Acquisition in a Developing Populus deltoides Plantation. Tree Physiol. In press.

    Google Scholar 

  • Coyle D and Coleman M Forest production responses to fertilization and irrigation are not explained by shifts in allocation. For. Ecol. Manage. In press.

    Google Scholar 

  • Crookshanks M, Taylor G and Broadmeadow M 1998 Elevated CO2 and tree root growth: contrasting responses in Fraxinus excelsior, Quercus petraea and Pinus sylvestris. New Phytol. 138, 241–250.

    Google Scholar 

  • Davidson E A, Savage K, Bolstad P, Clark D A, Curtis P S, Ellsworth D S, Hanson P J, Law B E, Luo Y, Pregitzer K S, Randolph J C and Zak D 2002 Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agr. Forest Meteorol. 113, 39–51.

    Google Scholar 

  • Dickson R E and Isebrands J G 1993 Carbon allocation terminology: should it be more rational? Bulletin of Ecological Society of America 74, 175–177.

    Google Scholar 

  • Eissenstat D M, Wells C E, Yanai R D and Whitbeck J L 2000 Building roots in a changing environment: implications for root longevity. New Phytol. 147, 33–42.

    CAS  Google Scholar 

  • Eissenstat D M and Yanai R D 1997 The ecology of root lifespan. Advances in Ecological Research. 27, 1–60.

    Google Scholar 

  • Enquist B J 2002 Universal scaling in tree and vascular plant allometry: Toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiology. 22, 1045–1064.

    PubMed  Google Scholar 

  • Enquist B J and Niklas K J 2002 Global allocation rules for patterns of biomass partitioning in seed plants. Science 295, 1517–1520.

    PubMed  CAS  Google Scholar 

  • Finer L and Laine J 1998 Root dynamics at drained peatland sites of different fertility in southern Finland. Plant Soil 201, 27–36.

    CAS  Google Scholar 

  • Fitter A H, Self G K, Brown T K, Bogie D S, Graves J D, Benham D and Ineson P 1999 Root production and turnover in an upland grassland subjected to artificial soil warming respond to radiation flux and nutrients, not temperature. Oecologia 120, 575–581.

    Google Scholar 

  • Fogel R and Hunt G 1983 Contribution of mycorrhizae and soil fungi to nutrient cycling in a Douglas-fir ecosystem. Can. J. For. Res. 13, 219–232.

    CAS  Google Scholar 

  • Gaudinski J B, Trumbore S E, Davidson E A, Cook A C, Markewitz D and Richter D D 2001 The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia 129, 420–429.

    Google Scholar 

  • Gebauer R L E, Reynolds J F and Strain B R 1996 Allometric relations and growth in Pinus taeda: the effect of elevated CO2 and changing N availability. New Phytol. 134, 85–93.

    Google Scholar 

  • Giardina C P and Rhoades C C 2001 Clear cutting and burning affect nitrogen supply, phosphorus fractions and seedling growth in soils from a Wyoming lodgepole pine forest. For. Ecol. Manag. 140, 19–28.

    Google Scholar 

  • Giardina C P and Ryan M G 2000a Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404, 858–861.

    PubMed  CAS  Google Scholar 

  • Giardina C P and Ryan M G 2002 Soil surface CO2 efflux, litterfall, and total belowground carbon allocation in a fast growing Eucalyptus plantation. Ecosystems 5, 487–499.

    CAS  Google Scholar 

  • Giardina C P, Ryan M G, Binkley D, and Fownes J H 2003 Primary production and carbon allocation in relation to nutrient supply in an experimental tropical forest. Global Change Biol. 9, 1438–1450.

    Google Scholar 

  • Giardina C P, Binkley D, Ryan M G and Fownes J H 2004 Belowground carbon cycling in a humid tropical forest decreases with fertilization. Oecologia 139, 545–550.

    PubMed  Google Scholar 

  • Gill R A and Jackson R B 2000 Global patterns of root turnover for terrestrial ecosystems. New Phytol. 147, 13–31.

    Google Scholar 

  • Godbold D L, Berntson G M and Bazzaz F A 1997 Growth and mycorrhizal colonization of three North American tree species under elevated atmospheric CO2. New Phytol. 137, 433–440.

    CAS  Google Scholar 

  • Gower, S.T., O. Krankina, R.J. Olson, M. Apps, S. Linder and C. Wang 2001a. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol. Appl. 11:1395–1411.

    Google Scholar 

  • Gower S T, Krankina O, Olson R J, Apps M, Linder S and Wang C 2001b NPP Boreal Forest: Consistent Worldwide Site Estimates. 1977–1994. Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. http://www.daac.ornl.gov.

    Google Scholar 

  • Grace J and Rayment M 2000 Respiration in the balance. Nature 404, 819–820.

    PubMed  CAS  Google Scholar 

  • Grandmougin-Ferjani A, Dalpe Y, Hartmann M A, Laruelle F and Sancholle M 1999 Sterol distribution in arbuscular mycorrhizal fungi. Phytochemistry 50, 1027–1031.

    CAS  Google Scholar 

  • Grier C C, Vogt K A, Keyes M R and Edmonds R L 1981 Biomass distribution and above-and below-ground production in young and mature Abies amabilis zone ecosystems of the Washingtion Cascades. Can. J. For. Res. 11, 155–167.

    Google Scholar 

  • Haynes B E and Gower S T 1995 Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiol. 153, 17–325.

    Google Scholar 

  • Hendrick R L and Pregitzer K S 1992 The demography of fine roots in a northern hardwood forest. Ecology 73, 1094–1104.

    Google Scholar 

  • Hendrick, R.L. and K.S. Pregitzer 1993. Patterns of fine root mortality in two sugar maple forests. Nature 361, 59–61.

    Google Scholar 

  • Hendrick R L and Pregitzer K S 1996 Temporal and depth-related patterns of fine root dynamics in northern hardwood forests. J. Ecol. 84, 167–176.

    Google Scholar 

  • Hendrick R L and Pregitzer K S 1997 The relationship between fine root demography and the soil environment in northern hardwood forests. Ecoscience 4, 99–105.

    Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor A F S, Ekblad A, Högberg M, Nyberg G, Ottosson-Löfvenius M, and Read D J 2001 Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411, 789–792.

    PubMed  Google Scholar 

  • Holland E A, Neff J C, Townsend A R and McKeown B 2000 Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: Implications for models. Global Biogeochem. Cy. 14, 1137–1151.

    CAS  Google Scholar 

  • Holland E A, Braswell B H, Lamarque J F, Townsend A, Sulzman J, Muller J F, Dentener F, Brasseur G, Levy H, Penner J E, Roelofs G J 1997 Variation in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on terrestrial carbon uptake. J. Geophys. Res. 102, 15849–15866.

    CAS  Google Scholar 

  • Horwath W R, Pregitzer K S and E A Paul 1994 14C allocation in tree soil systems. Tree Physiol. 14, 1163–1176.

    PubMed  Google Scholar 

  • Jackson R B, Banner J L, Jobbágy E G, Pockman W T and Wall D H 2002 Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418, 623–626

    PubMed  CAS  Google Scholar 

  • Janssens I A, Lankreijer H, Matteucci G, Kowalski A S, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grunwald T, Montagnani L, Dore S, Rebmann C, Moors E J, Grelle A, Rannik U, Morgenstern K, Oltchev S, Clement R, Gudmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze E D, Lindroth A, Dolman A J, Jarvis P G, Ceulemans R, Valentini R. 2001 Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biol. 7, 269–278.

    Google Scholar 

  • Johnson M G, Tingey D T, Phillips D L and Storm M J 2001 Advancing fine root research with minirhizotrons. Environ. Exp. Bot. 45, 263–289.

    PubMed  Google Scholar 

  • Joslin J D and Wolfe M H 1999 Disturbances during minirhizotron installation can affect observation data. Soil Sci. Soc. Am. J. 63, 218–221.

    CAS  Google Scholar 

  • Joslin J D, Wolfe M H and Hanson P J 2001 Factors controlling the timing of root elongation intensity in a mature upland oak stand. Plant Soil 228, 201–212.

    Google Scholar 

  • Karnosky D F, Zak D R, Pregitzer K S, Awmack C S, Bockheim J G, Dickson R E, Hendrey G R, Host G E, King J S, Kopper B J, Kruger E L, Kubiske M E, Lindroth R L, Mattson W J, Mcdonald E P, Noormets A, Oksanen E, Parsons W F J, Percy K E, Podila G K, Riemenschneider D E, Sharma P, Thakur R, Sober A, Sober J, Jones W S, Anttonen S, Vapaavuori E, Mankovska B, Heilman W, Isebrands J G. 2003. Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Funct. Ecol. 17, 289–304.

    Google Scholar 

  • Kaspar TC and Bland W L 1992 Soil-Temperature and Root-Growth. Soil Sci. 154, 290–299.

    Google Scholar 

  • Kern C C, Friend A L, Johnson J M F and Coleman M D 2004 Fine-root dynamics in a developing Populus deltoides plantation. Tree Physiol. 24, 651–660.

    PubMed  Google Scholar 

  • Keyes M R and Grier C C 1981 Above-and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Can. J. For. Res. 11, 599–605.

    Google Scholar 

  • King J S, Albaugh T J, Allen H L and Kress LW 1999a Stand-level allometry in Pinus taeda as affected by irrigation and fertilization. Tree Physiol. 19, 769–778.

    PubMed  Google Scholar 

  • King J S, Pregitzer K S and Zak D R 1999b Clonal variation in above-and below-ground growth responses of Populus tremuloides Michaux: Influence of soil warming and nutrient availability. Plant Soil 217, 119–130.

    Google Scholar 

  • King J S, Pregitzer K S, Zak D R, Sober J, Isebrands J G, Dickson R E, Hendrey G R, Karnosky D F. 2001 Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia 128, 237–250.

    Google Scholar 

  • King J S, Hanson P J, Bernhardt E, DeAngelis P, Norby R J and Pregitzer K S 2004 A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Global Change Biol. 10, 1027–1042.

    Google Scholar 

  • King J S, Thomas R B and Strain B R 1996 Growth and carbon accumulation in root systems of Pinus taeda and Pinus ponderosa seedlings as affected by varying CO2, temperature and nitrogen. Tree Physiol. 16, 635–642.

    PubMed  Google Scholar 

  • Landsberg J J and Gower S T 1997 Applications of physiological ecology to forest management. Academic Press, New York. 354 pp.

    Google Scholar 

  • Law B E, Ryan M G and Anthoni P M 1999 Seasonal and annual respiration of a ponderosa pine ecosystem. Global Change Biol. 5, 169–182.

    Google Scholar 

  • Li Z, Kurz W A, Apps M J and Beukema S J 2003 Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector: recent improvements and implications for the estimation of NPP and NEP. Can. J. For. Res. 33, 126–136.

    Google Scholar 

  • Lilleskov E A, Fahey T J and Lovett G M 2001 Ectomycorrhizal fungal aboveground community change over an atmospheric nitrogen deposition gradient. Ecol. Appl. 11, 397–410.

    Google Scholar 

  • Lilleskov E A, Fahey T J, Horton T R, Lovett G M 2002 Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83(1), 104–115.

    Google Scholar 

  • Litton C M, Ryan M G and Raich J Carbon allocation in forest ecosystems. Oecologia In Review.

    Google Scholar 

  • Litton C M, Ryan M G, Tinker D B and DH Knight 2003 Below-and aboveground biomass in young post-fire lodgepole pine forests of contrasting tree density. Can. J. For. Res. 33, 351–363.

    Google Scholar 

  • Litton C M, Ryan M G and Knight D H 2004 Effects of tree density and stand age on carbon allocation patterns in a postfire lodgepole pine ecosystem. Ecol. Appl. 14, 460–475.

    Google Scholar 

  • Livingston D A 1968 Some inter-stadial and post-glacial pollen diagrams from eastern Canada. Ecol. Monogr. 38, 87–125.

    Google Scholar 

  • Loya W, Pregitzer K, Karberg N, King J and Giardina C 2003 Reduction of soil carbon formation by tropospheric ozone under elevated carbon dioxide. Nature 425, 705–707.

    PubMed  CAS  Google Scholar 

  • Lukac M, Calfapietra C and Godbold D L 2003 Production, turnover and mycorrhizal colonization of root systems of three Populus species grown under elevated CO2 (POPFACE). Global Change Biol. 9, 838–848.

    Google Scholar 

  • Luo Y Q 2003 Uncertainties in interpretation of isotope signals for estimation of fine root longevity: theoretical considerations. Global Change Biol. 9, 1118–1129.

    Google Scholar 

  • Lyr H and Hoffmann G 1967 Growth rates and growth periodicity of roots. International Review of Forestry Research 2, 181–236.

    Google Scholar 

  • Matamala R, Gonzalez-Meler M A, Jastrow J D, Norby R J and Schlesinger W H 2003 Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302, 1385–1387.

    PubMed  CAS  Google Scholar 

  • Matamala R and W H Schlesinger 2000 Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biol. 6, 967–979.

    Google Scholar 

  • McClaugherty C A, Aber J D and Melillo J M. The role of fine roots in the organic matter and nitrogen budgets of forested ecosystems. Ecology 63, 1481–1490.

    Google Scholar 

  • McConnaughay K D M and Coleman J S 1999 Biomass allocation in plants: Ontogeny or optimality? A test along three resource gradients. Ecology 80, 2581–2593.

    Google Scholar 

  • McDowell N G, Balster N J and Marshall J D 2001 Belowground carbon allocation of Rocky Mountain Douglas-fir. Can. J. For. Res. 31, 1425–1436.

    CAS  Google Scholar 

  • McElrone A J, Pockman W T, Martinez-Vilalta J and Jackson R B 2004 Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytol. 163, 507–517.

    Google Scholar 

  • McKevlin M R, Hook D H and Rozelle A A 1998 Adaptations of plants to flooding and soil waterlogging. In Southern Forested Wetlands — Ecology and Management. Eds. M G Messina and W H Conner. pp. 173–204. Lewis Press. Boca Raton, FL.

    Google Scholar 

  • Minkkinen K and Laine J 1998 Long term effect of forest drainage on peat carbon stores of pine mires in Finland. Can. J. For. Res. 28, 1267–1275.

    Google Scholar 

  • Melillo J M, Steudler P A, Aber J D, Newkirk K, Lux H, Bowles F P, Catricala C, Magill A, Ahrens T, Morrisseau S 2002 Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176.

    PubMed  CAS  Google Scholar 

  • Nadelhoffer K J and Raich J W 1992 Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73, 1139–1147.

    Google Scholar 

  • Nepstad D C, de Carvalho C R, Davidson E A, Jipp P H, Lefebvre P A, de Negreiros G H, da Silva E D, Stone T A, Trumbore S E and Vieira S 1994 The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372(6507), 666–669.

    CAS  Google Scholar 

  • Norby R J and Jackson R B 2000 Root dynamics and global change: seeking an ecosystem perspective. New Phytol. 147, 3–12.

    CAS  Google Scholar 

  • Norby R J and Luo Y 2004 Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol. 162, 281–293.

    Google Scholar 

  • Norby R J, Gunderson C A, Wullschleger S D, O’Neill E G and McCracken M K 1992 Productivity and compensatory responses of yellow-poplar trees in elevated CO2. Nature 357, 322–324.

    Google Scholar 

  • Norby R J, Ledford J, Reilly C D, Miller N E and O’Neill E G 2004 Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. P. Natl. Acad. Sci. USA. 101, 9689–9693.

    CAS  Google Scholar 

  • Norby R J, Hanson P J, O’Neill E G, Tschaplinski T J, Weltzin J F, Hansen R A, Cheng W X, Wullschleger S D, Gunderson C A, Edwards N T, Johnson D W 2002 Net primary production of a CO2-enriched deciduous forest and the implications for carbon storage. Ecol. Appl. 12, 1261–1266.

    Google Scholar 

  • Olsson P A, Larsson L, Bago B, Wallander H and van Aarle I M 2003 Ergosterol and fatty acids for biomass estimation of mycorrhizal fungi. New Phytol. 159, 7–10.

    CAS  Google Scholar 

  • Ovington J D 1957 Dry-matter production by Pinus sylvestris L. Ann. Bot. (N.S.) 82, 288–314.

    Google Scholar 

  • Paul E and Clark F 1996 Soil Microbiology and Biochemistry. Academic Press, New York.

    Google Scholar 

  • Paul K I, Polglase P J, Nyakuengama J G, Khanna P K 2002 Change in soil carbon following afforestation. For. Ecol. Manag. 168, 241–257.

    Google Scholar 

  • Pendall E, Bridgham S, Hanson P J, Hungate B, Kicklighter D W, Johnson D W, Law B E, Luo Y Q, Megonigal J P, Olsrud M, Ryan M G and Wan S Q 2004 Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytol. 162, 311–322.

    Google Scholar 

  • Pregitzer K S 2002 Fine roots of trees — a new perspective. New Phytol. 154, 267–273.

    Google Scholar 

  • Pregitzer K S 2003 Woody plants, carbon allocation and fine roots. New Phytol. 158, 421–424.

    Google Scholar 

  • Pregitzer K S, King J S, Burton A J and S E Brown 2000a Response of tree fine roots to temperature. New Phytol. 147, 105–115.

    CAS  Google Scholar 

  • Pregitzer K, Zak D, Curtis P, Kubiske M, Teeri J and Vogel C 1995 Atmospheric CO2, soil nitrogen, and turnover of fine roots. New Phytol. 129, 579–585.

    Google Scholar 

  • Pregitzer K S, Zak D R, Maziasz J, DeForest J, Curtis P S and Lussenhop J 2000b Interactive effects of atmospheric CO2 and soil-N availability on fine roots of Populus tremuloides. Ecol. Appl. 10, 18–33.

    Google Scholar 

  • Pritchard S G, Rogers H H, Davis M A, Van Santen E, Prior S A and Schlesinger W H 2001 The influence of elevated atmospheric CO2 on fine root dynamics in an intact temperate forest. Global Change Biol. 7, 829–837.

    Google Scholar 

  • Publicover D A and Vogt K A 1993 A comparison of methods for estimating forest fine root production with respect to sources of error. Can. J. For. Res. 23, 1179–1186.

    Google Scholar 

  • Raich J W and Nadelhoffer K J 1989 Belowground carbon allocation in forest ecosystems: Global trends. Ecology 70, 1346–1354.

    Google Scholar 

  • Reich P B 1983 Effects of low concentrations of O3 on net photosynthesis, dark respiration, and chlorophyll contents in aging hybrid poplar leaves. Plant Physiol 73, 291–296.

    PubMed  CAS  Google Scholar 

  • Reich P B and Amundson R G 1985 Ambient levels of O3 reduce net photosynthesis in tree and crop species. Science 230, 566–570.

    CAS  Google Scholar 

  • Reich P and Bolstad P 2001 Productivity of evergreen and deciduous temperate forests. In Terrestrial Global Productivity. J Roy, B Saugier and H A Mooney. pp. 245–283 Academic Press, San Diego, USA.

    Google Scholar 

  • Reuss R W, Hendrick R L, Burton A J, Pregitzer K S, Bjartmar Sveinbjornsson, Allen M F and Maurer G E 2003 Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol. Monogr. 73, 643–662.

    Google Scholar 

  • Ryan M G, Linder S, Vose J M and Hubbard R M 1994 Dark respiration in pines. In Pine Ecosystems. Eds. H L Gholz, S Linder, R E McMurtrie. pp. 50–63. Ecological Bulletins 43, Uppsala.

    Google Scholar 

  • Ryan M G, Hubbard R M, Pongracic S, Raison R J and McMurtrie R E 1996 Autotrophic respiration in Pinus radiata in relation to nutrient status. Tree Physiol. 16, 333–343.

    PubMed  Google Scholar 

  • Ryan M G, Lavigne M B, Gower S T 1997 Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J. Geophys. Res. 102(D24), 28871–28884.

    CAS  Google Scholar 

  • Rygiewicz P T, Johnson M G, Ganio L M, Tingey D T and Storm M J 1997 Lifetime and temporal occurrence of ectomycorrhizae on ponderosa pine (Pinus ponderosa Laws) seedlings grown under varied atmospheric CO2 and nitrogen levels. Plant Soil 189, 275–287.

    CAS  Google Scholar 

  • Santantonio D and Hermann R K 1985 Standing crop, production and turnover of fine roots on dry, moderate, and wet sites of mature Douglas-fir in western Oregon. Ann. Sci. Forest. 42, 113–142.

    Google Scholar 

  • Sarmiento J 2000 That sinking feeling. Nature 408, 155–156.

    PubMed  CAS  Google Scholar 

  • Shaver G R and Jonasson S 2001 Productivity of Arctic Ecosystems. In Terrestrial Global Productivity. Eds. J Roy, B Saugier and H A Mooney. pp. 189–210. Academic Press, San Diego, USA.

    Google Scholar 

  • Schimel D S, Braswell B H, Holland E A, McKeown R, Ojima D S, Painter T H, Parton W J and Townsend A R 1994 Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochem. Cy. 8, 279–293.

    CAS  Google Scholar 

  • Six J, Callewaert P, Lenders S, Degryze S, Morris S J, Gregorich E G, Paul E A and Paustian K 2002 Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Sci. Soc. Am. J. 66, 1981–1987.

    CAS  Google Scholar 

  • Smith S E and Read D J 1997 Mycorrhizal Symbiosis. London, UK: Academic Press.

    Google Scholar 

  • Smith F W Resh S C 1999 Age-related changes in production and below-ground carbon allocation in Pinus contorta forests. For. Sci. 45:333–341.

    Google Scholar 

  • Stape J L, Binkley D and Ryan M G 2004 Eucalyptus production and the supply, use and the efficiency of use of water, light and nitrogen across a geographic gradient in Brazil. For. Ecol. Manag. 193, 17–31.

    Google Scholar 

  • Steele S J, Gower S T, Vogel J G, and Norman J M 1997 Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiol. 17, 577–587.

    PubMed  CAS  Google Scholar 

  • Stevens G N, Jones R H and Mitchell R J 2002 Rapid fine root disappearance in a pine woodland: a substantial carbon flux. Can. J. For. Res. 32, 2225–2230.

    Google Scholar 

  • Teskey R O and Hinckley T M 1981 Influence of temperature and water potential on root growth of white oak. Physiol. Plantarum 52, 363–369.

    Google Scholar 

  • Tierney G L, Fahey T J, Groffman P M, Hardy J P, Fitzhugh R D, Driscoll C T and Yavitt J B 2003 Environmental control of fine root dynamics in a northern hardwood forest. Global Change Biol. 9, 670–679.

    Google Scholar 

  • Townsend A R, Braswell B H, Holland E A and Penner J E 1996 Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecol. Appl. 6, 806–814.

    Google Scholar 

  • Treseder K K 2004 A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164(2), 347–355.

    Google Scholar 

  • Trettin C C and Jurgensen M F 2003 Carbon cycling in wetland forest soils. In The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect. Eds. J Kimble, R Birdsie and R Lal. pp. 311–328. CRC Press. Boca Raton, FL.

    Google Scholar 

  • Uselman S M, Qualls R G and Thomas R B 1999 Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L.). Plant Soil 222, 191–202.

    Google Scholar 

  • VEMAP members 1995 Vegetation/ecosystem modeling and analysis project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem response to climate change and CO2 doubling. Global Biogeochem. Cy. 9, 407–437.

    Google Scholar 

  • Vos J and J Groenwold 1987 The relation between root growth along observation tubes and in bulk soil. In Minirhizotron observation tubes: Methods and applications for measuring rhizosphere dynamics. Ed. H M Taylor. pp. 39–49. American Society of Agronomy, Inc. Madison, WI.

    Google Scholar 

  • Wan S Q, Norby R J, Pregitzer K S, Ledford J and O’Neill E G 2004 CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytol. 162, 437–446.

    Google Scholar 

  • Wells C E and Eissenstat D M 2001 Marked differences in survivorship among apple roots of different diameters. Ecology 82, 882–892.

    Google Scholar 

  • Wells C E, Glenn D M and Eissenstat D M 2002a Changes in the risk of fine-root mortality with age: A case study in peach, Prunus persica (Rosaceae). Am. J. Bot. 89, 79–87.

    Google Scholar 

  • Wells C E, Glenn D M and Eissenstat D M 2002b Soil insects alter fine root demography in peach (Prunus persica). Plant Cell Environ. 25, 431–439.

    Google Scholar 

  • Withington J M, Elkin A D, Bulaj B, Olesinski J, Tracy K N, Bouma T J, Oleksyn J, Anderson L J, Modrzynski J, Reich P B and Eissenstat D M 2003 The impact of material used for minirhizotron tubes for root research. New Phytol. 160, 533–544.

    Google Scholar 

  • Wallander H, Nilsson L O, Hagerberg D and Baath E 2001 Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol. 151, 753–760

    CAS  Google Scholar 

  • Zak D R, Pregitzer K S, King J S and Holmes W E 2000a Elevated atmospheric CO2 and the composition and function of soil microbial communities. Ecol. Appl. 10, 47–59.

    Google Scholar 

  • Zak D R, Pregitzer K S, Curtis P S and Holmes W E 2000b Atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol. 147, 201–222.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Giardina, C.P. et al. (2005). The Response of Belowground Carbon Allocation in Forests to Global Change. In: Binkley, D., Menyailo, O. (eds) Tree Species Effects on Soils: Implications for Global Change. NATO Science Series IV: Earth and Environmental Sciences, vol 55. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3447-4_7

Download citation

Publish with us

Policies and ethics