Skip to main content
Log in

Separation of root and microbial respiration: Comparison of three methods

  • Soil Biology
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

In a laboratory experiment, the following methods of separating the soil CO2 flux into the root respiration and the respiration of the rhizosphere and nonrhizosphere microorganisms were compared: (1) root exclusion, (2) component integration, and (3) 14C pulse labeling. Depending on the method used, the combined contribution of the rhizosphere microorganisms and roots varied from 18 to 40% of the total CO2 emission; the contribution of the roots alone was 8–19%, and that of the nonrhizosphere microorganisms was 51–82%. The nonisotope methods (1 and 2) gave similar results of the separation. The pulse labeling of plants satisfactorily separated the root and microbial respiration, but it is unsuitable for determining the respiration of the nonrhizosphere microorganisms. Advantages and disadvantages of each method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Blagodatskii, A. A. Larionova, and I. V. Evdokimov, “Contribution of Root Respiration to CO2 Emission from Soil,” in Soil Respiration (Ross. Akad. Nauk, Pushchino, 1993), pp. 26–32 [in Russian].

    Google Scholar 

  2. Ya. V. Kuzyakov, “Tracer Studies of Carbon Translocation by Plants from the Atmosphere into the Soil (A Review),” Pochvovedenie, No. 1, 36–51 (2001) [Eur. Soil Sci. 31 (1), 28–42 (2001)].

  3. A. A. Larionova, L. N. Rozanova, T. S. Demkina, et al., “Annual Emission of CO2 from Gray Forest Soils,” Pochvovedenie, No. 1, 72–80 (2001) [Eur. Soil Sci. 31 (1), 61–68 (2001)].

  4. A. A. Larionova, I. V. Evdokimov, I. N. Kurganova, et al., “Root Respiration and Its Contribution to the CO2 Emission from Soil,” Pochvovedenie, No. 2, 183–194 (2003) [Eur. Soil Sci. 36 (2), 173–184 (2003)].

  5. J. P. E. Anderson and K. H. Domsch, “Quantification of Bacterial and Fungal Contributions to Soil Respiration,” Arch. Microbiol. 93(2), 113–127 (1973).

    Google Scholar 

  6. C. A. Black, Methods for Soil Analysis, (American Society of Agronomy, Madison, WI, 1965), Part 2, pp. 1562–1565.

    Google Scholar 

  7. C. Blet-Charaudeau, J. Muller, and H. Laudelout, “Kinetics of Carbon Dioxide Evolution in Relation to Microbial Biomass and Temperature,” Soil Sci. Soc. Am. J. 54, 1324–1328 (1990).

    Article  Google Scholar 

  8. R. D. Bowden, K. J. Nadelhoffer, R. D. Boone, et al., “Contributions of Above-Ground Litter, Below-Ground Litter, and Root Respiration to Total Soil Respiration in a Temperate Mixed Hardwood Forest,” Can. J. For. Res. 23, 1402–1407 (1993).

    Article  Google Scholar 

  9. A. J. Burton and K. S. Pregitzer, “Measurement Carbon Dioxide Concentration Does Not Affect Root Respiration of Nine Tree Species in the Field,” Tree Physiol. 22, 67–72 (2002).

    Google Scholar 

  10. C. E. Catricala, K. M. Newkirk, P. A. Steudler, and J. M. Melillo, “Effect of Soil Warming on Microbial and Root Respiration,” Agron. Abstr., 284 (1997).

  11. W. Cheng, D. C. Coleman, C. R. Carroll, and C. A. Hoffman, “In Situ Measurement of Root Respiration and Soluble C Concentrations in the Rhizosphere,” Soil Biol. Biochem. 25, 1189–1196 (1993).

    Article  Google Scholar 

  12. W. Cheng, Q. Zhang, D. C. Coleman, et al., “Is Available Carbon Limiting Microbial Respiration in the Rhizosphere?,” Soil Biol. Biochem. 28, 1283–1288 (1996).

    Article  Google Scholar 

  13. D. C. Coleman, “Compartmental Analysis of ‘Total Soil Respiration’: An Exploratory Study,” Oikos 24, 361–366 (1973).

    Article  Google Scholar 

  14. N. Crapo and R. Bowmer, “Respiratory Rates of Detopped and Intact Corn,” Oikos 24, 465–468 (1973).

    Article  Google Scholar 

  15. G. Domanski, Y. Kuzyakov, S. V. Siniakina, and K. Stahr, “Carbon Flows in the Rhizosphere of Lolium perenne,” J. Plant Nutr. Soil Sci. 164, 381–387 (2001).

    Article  Google Scholar 

  16. J. F. Dormaar, “Effect of Active Roots on the Decomposition of Soil Organic Matter,” Biol. Fert. Soils 19, 121–126 (1990).

    Google Scholar 

  17. N. T. Edwards, “Root and Soil Respiration Responses to Ozone in Pinus taeda L. Seedlings,” New Phytol. 118, 315–321 (1991).

    Article  Google Scholar 

  18. N. T. Edwards and W. F. Harris, “Carbon Cycling in a Mixed Deciduous Forest Floor,” Ecology 58, 431–437 (1977).

    Article  Google Scholar 

  19. N. T. Edwards and R. J. Norby, “Below-Ground Respiratory Responses of Sugar Maple and Red Maple Saplings to Atmospheric CO2 Enrichment and Elevated Air Temperature,” Plant Soil 206, 85–97 (1998).

    Article  Google Scholar 

  20. N. T. Edwards and P. Sollins, “Continuous Measurement of Carbon Dioxide Evolution from Partitioned Forest Floor Components,” Ecology 54, 406–412 (1973).

    Article  Google Scholar 

  21. K. C. Ewel, W. P. Cropper, and H. L. Gholz, “Soil CO2 Evolution in Florida Slash Pine Plantations: II. Importance of Root Respiration,” Can. J. For. Res. 17, 330–333 (1987).

    Article  Google Scholar 

  22. J. Glosser and M. Tesarova, “Litter, Soil, and Root Respiration Measurements: An Improved Compartmental Analysis Method,” Pedobiologia 18(1), 76–81 (1978).

    Google Scholar 

  23. A. J. Hall, D. J. Connor, and D. M. Whitfield, “Root Respiration during Grain Filling in Sunflower: the Effects of Water Stress,” Plant Soil 121, 57–66 (1990).

    Article  Google Scholar 

  24. P. J. Hanson, N. T. Edwards, C. T. Garten, and J. A. Andrews, “Separating Root and Soil Microbial Contributions to Soil Respiration: A Review of Methods and Observations,” Biogeochem. 48, 115–146 (2000).

    Article  Google Scholar 

  25. B. E. Haynes and S. T. Gower, “Belowground Carbon Allocation in Unfertilized and Fertilized Red Pine Plantations in Northern Wisconsin,” Tree Physiol. 15, 317–325 (1995).

    Google Scholar 

  26. H. M. Helal and D. R. Sauerbeck, “Die Angabe von organisch gebundenem Kohlenstoff durch wachsende Pflanzenwurzeln,” Mitt. Ges. Pflanzenbauwiss. 1, 75–77 (1988).

    Google Scholar 

  27. H. M. Helal and D. R. Sauerbeck, “Short-Term Determination of the Actual Respiration Rate of Intact Plant Roots,” in The Roots and Their Environment, Ed. by B. L. McMichael and H. Person (Elsevier Science, Amsterdam, 1991), pp. 88–92.

    Google Scholar 

  28. W. R. Horwath, K. S. Pregitzer, and E. A. Paul, “14C Allocation in Tree-Soil Systems,” Tree Physiol. 14, 1163–1176 (1994).

    Google Scholar 

  29. Y. Kuzyakov, “Separating Microbial Respiration of Exudates from Root Respiration in Non-Sterile Soils: a Comparison of Four Methods,” Soil Biol. Biochem. 34, 1621–1631 (2002).

    Article  Google Scholar 

  30. Y. Kuzyakov, “Sources of CO2 Efflux from Soil and Review of Partitioning Methods,” Soil Biol. Biochem. 38(3), 425–448 (2006).

    Article  Google Scholar 

  31. Y. V. Kuzyakov, “Review: Factors Affecting Rhizosphere Priming Effects,” J. Plant Nutr. Soil Sci. 165(4), 382–396 (2002).

    Article  Google Scholar 

  32. Y. Kuzyakov and W. Cheng, “Photosynthesis Control of Rhizosphere Respiration and Organic Matter Decomposition,” Soil Biol. Biochem. 33, 1915–1925 (2001).

    Article  Google Scholar 

  33. Y. Kuzyakov and G. Domanski, “Model for Rhizodeposition and CO2 Efflux from Planted Soil and Its Validation by 14C Pulse Labeling of Ryegrass,” Plant Soil 239, 87–102 (2002).

    Article  Google Scholar 

  34. Y. Kuzyakov, A. Kretzschmar, and K. Stahr, “Contribution of Lolium perenne Rhizodeposition to Carbon Turnover of Pasture Soil,” Plant Soil 213, 127–136 (1999).

    Article  Google Scholar 

  35. Y. Kuzyakov and A. Larionova, “Root and Rhizomicrobial Respiration: A Review of Approaches to Estimate Respiration by Autotrophic and Heterotrophic Organisms in Soil,” J. Plant Nutr. Soil Sci. 168, 1–18 (2005).

    Article  Google Scholar 

  36. Y. Kuzyakov, P. Leinweber, D. Sapronov, and K-U. Eckhardt, “Qualitative Assessment of Rhizodeposits in Nonsterile Soil by Analytical Pyrolysis,” J. Plant Nutr. Soil Sci. 166, 719–723 (2003).

    Article  Google Scholar 

  37. Y. Kuzyakov and S. V. Sinakina, “Siphon Method of Separating Root-Derived Organic Compounds from Root Respiration in Nonsterile Soil,” J. Plant Nutr. Soil Sci. 164, 511–517 (2001).

    Article  Google Scholar 

  38. A. A. Larionova, A. M. Yermolayev, S. A. Blagodatsky, et al., “Soil Respiration and Carbon Balance of Gray Forest Soils as Affected by Land Use,” Biol. Fertil. Soils 27, 251–257 (1998).

    Article  Google Scholar 

  39. W. Merbach, G. Knof, and G. Miksch, “Quantifizierung der C-Verwertung im Systeme Pflanze-Rhizosph are-Boden,” in Kohlenstoff-Stickstoffdynamik im Boden sowie Programme zur Steurung der organischen Düngung (Berlin, 1990), Vol. 295, pp. 57–63.

    Google Scholar 

  40. G. Minderman and J. C. Vulto, “Comparison of Techniques for the Measurement of Carbon Dioxide Evolution from Soil,” Pedobiologia 13(2), 73–80 (1973).

    Google Scholar 

  41. E. Paterson, J. M. Hall, E. A. S. Rattray, et al., “Effect of Elevated CO2 on Rhizosphere Carbon Flow and Soil Microbial Processes,” Global Change Biol. 3, 363–377 (1997).

    Article  Google Scholar 

  42. D. S. Powlson, “The Effects of Grinding on Microbial and Nonmicrobial Organic Matter in Soil,” J. Soil Sci. 31, 77–85 (1980).

    Article  Google Scholar 

  43. F. A. Robertson, R. J. K. Meyers, and P. G. Saffigna, “Respiration from Soil and Litter in a Sown Perennial Grass Pasture,” Aust. J. Soil Res. 33, 167–178 (1995).

    Article  Google Scholar 

  44. P. Rochette, L. B. Flanagan, and E. G. Gregorich, “Separating Soil Respiration into Plant and Soil Components Using Analyses of the Natural Abundance of Carbon-13,” Soil Sci. Soc. Am. J. 63, 1207–1213 (1999).

    Article  Google Scholar 

  45. K. P. Singh and C. Shekhar, “Seasonal Pattern of Total Soil Respiration, Its Fractionation, and Soil Carbon Balance in a Wheat-Maize Rotation Cropland at Varanasi,” Pedobiologia 29(5), 305–318 (1986).

    Google Scholar 

  46. G. S. Smith, C. M. Johnston, and I. S. Cornforth, “Comparison of Nutrient Solutions for Growth of Plants in Sand Culture,” New Phytol. 94, 537–548 (1983).

    Article  Google Scholar 

  47. J. Swinnen, “Evaluation of the Use of a Model Rhizodeposition Technique to Separate Root and Microbial Respiration in Soil,” Plant Soil 165, 89–101 (1994).

    Article  Google Scholar 

  48. V. Thierron and H. Laudelout, “Contribution of Root Respiration to Total CO2 Efflux from the Soil of a Deciduous Forest,” Can. J. For. Res. 26, 1142–1148 (1996).

    Google Scholar 

  49. F. R. Warembourg, “Application de techniques radioisotopiques a l’etude de l’activite biologique dans la rhizosphere des plantes,” Rev. Ecol. Biol. Sol 12(1), 261–272 (1975).

    Google Scholar 

  50. J. G. Xu and N. G. Juma, “Carbon Kinetics in a Black Chernozem with Roots in Situ,” Can. J. Soil Sci. 75, 299–305 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.V. Sapronov, Ya. V. Kuzyakov, 2007, published in Pochvovedenie, 2007, No. 7, pp. 862–872.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sapronov, D.V., Kuzyakov, Y.V. Separation of root and microbial respiration: Comparison of three methods. Eurasian Soil Sc. 40, 775–784 (2007). https://doi.org/10.1134/S1064229307070101

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229307070101

Keywords

Navigation