Skip to main content
Log in

The formation of magnetic ferric oxides in soils over underground gas storage reservoirs

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The concepts of the specific mechanisms responsible for the formation of magnetic ferric oxides in soils over artificial gas storage reservoirs are considered for the first time. Upon the interaction of technogenic allochthonous methane with soil, some biogeochemical barriers are formed that are characterized by the accumulation of solid products resulting from the functioning and development of the soil. The pedogenic new formations are represented by fine magnetic ferric oxides of specific shape. They are the result of an elementary soil-forming process—oxidogenesis composed of a complex of microprocesses of biogenic and abiogenic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. A. Alekseev, T. V. Alekseeva, and B. A. Makher, “Magnetic Properties and Mineralogy of Iron Compounds in Steppe Soils,” Pochvovedenie, No. 1, 62–74 (2003) [Eur. Soil Sci. 36 (1), 59–70 (2003)].

  2. V. F. Babanin, V. I. Trukhin, L. O. Karpachevskii, et al., Soil Magnetism (Yaroslavl, 1995) [in Russian].

  3. G. N. Baturin and V. T. Dubinchuk, Microstructures of Iron-Manganese Nodules in the Ocean: Atlas of Microphotos (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  4. Magnetite Biomineralization and Magnetoreception in Organisms, Ed. by J. L. Kirschvink, D. S. Jones, and B. J. MacFadden (Plenum, New York, 1985).

    Google Scholar 

  5. N. V. Verkhovtseva, “Formation of Magnetite and Magnetotaxis,” in Advances in Microbiology (Nauka, Moscow, 1992), Vol. 25, pp. 51–59 [in Russian].

    Google Scholar 

  6. Yu. N. Vodyanitskii, Formation of Iron Oxides in the Soil (Moscow, 2003) [in Russian].

  7. V. F. Gal’chenko, Methanotrophic Bacteria (GEOS, Moscow, 2001) [in Russian].

    Google Scholar 

  8. A. N. Gennadiev, S. S. Chernyanskii, and R. G. Kovach, “Magnetic Spherules as Soil Microcomponents and Tracers of Mass-Transfer Processes,” Pochvovedenie, No. 5, 566–580 (2004) [Eur. Soil Sci. 37 (5), 486–499 (2004)].

  9. Methods of Soil Microbiology and Biochemistry, Ed. by D. G. Zvyagintsev (Mosk. Gos. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  10. I. V. Ivanov, Extended Abstract of Dissertation (Moscow, 1969).

  11. V. A. Kovda and P. S. Slavin, “Theoretical Principles of Soil Geochemical Parameters of Oil-Bearing Capacity,” in Soil-Geochemical Methods of Search for Oil Fields (Akad. Nauk SSSR, Moscow, 1953), pp. 3–151 [in Russian].

    Google Scholar 

  12. Yu. R. Malashenko, V. A. Romanovskaya, and Yu. A. Trotsenko, Methane-Oxidizing Microorganisms (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  13. G. A. Mogilevskii, V. M. Bogdanova, S. M. Kichatova, et al., “Bacterial Filter in the Zone of Oil and Gas Fields, Its Features, and Methods of Studying,” in Geochemical Methods of Search for Oil and Gas and Problems of Nuclear Geology (Nedra, Moscow, 1970), pp. 211–301 [in Russian].

    Google Scholar 

  14. N. V. Mozharova, S. A. Kulachkova, and V. V. Pronina, “Functioning of Soil Cover of Gas-Bearing Areas,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 3, 9–19 (2005).

  15. G. A. Osipov, T. N. Nazina, and A. I. Ivanova, “Studying the Species Composition of Microbial Community in Oil-Bearing Soil Layer by Chromato-Mass-Spectrometry,” Mikrobiologiya 63(5), 876–882 (1994).

    Google Scholar 

  16. N. S. Panikov, A. I. Semenov, A. L. Tarasova, et al., “Formation and Intake of Methane in Soils of European Soviet Union,” Ekol. Khim., No. 1, 9–36 (1992).

  17. D. E. Pukhov, Extended Abstract of Candidate’s Dissertation in Biology (Moscow, 2004).

  18. I. P. Serdobol’skii, “Redox Potential of Soils as a Soil-Geochemical Parameter of Oil-bearing Structures,” in Soil-Geochemical Methods of Search for Oil Fields (Akad. Nauk SSSR, Moscow, 1953), pp. 56–76 [in Russian].

    Google Scholar 

  19. Yu. A. Trotsenko, E. G. Ivanova, and N. V. Doronina, “Aerobic Methylotrophic Bacteria as Phytosymbionts,” Mikrobiologiya 70(6), 725–736 (2001).

    Google Scholar 

  20. A. G. Shchelochkov, Extended Abstract of Candidate’s Dissertation in Chemistry (2004).

  21. D. A. Bazylinski and B. M. Moskowitz, “Microbial Biomineralization of Magnetic Iron Minerals: Microbiology, Magnetism, and Environmental Significance,” Rev. Mineral., No. 35, 181–223 (1997).

  22. W. R. Fiscer, “Microbiological Reaction of Iron in Soils,” in Iron in Soils and Clay Minerals, NATO ASI Series C, (Reidel, Dorddrecht, 1988), Vol. 217 pp. 272–293.

    Google Scholar 

  23. I. G. Gazaryan, L. M. Lagrimini, G. A. Ashby, and R. N. F. Thorneley, “Mechanism of Indole-3-Acetic Acid Oxidation by Plant Peroxidases: Anaerobic Stopped-Flow Spectrophotometric Studies on Horseradish and Tobacco Peroxidases,” Biochem. J. 313, 841–847 (1996).

    Google Scholar 

  24. H. J. Harper, “The Effect of Natural Gas on the Growth of Microorganisms and the Accumulation of Nitrogen and Organic Matter in the Soil,” Soil Sci. 48, 461–466 (1939).

    Article  Google Scholar 

  25. A. A. Kamnev, A. G. Shchelochkov, P. A. Tarantilis, et al., “Complexation of Indole-3-Acetic Acid with Iron (III): Influence of Coordination on the π-Electronic System of the Ligand,” Monatsh. Chem. 132(6), 675–681 (2001).

    Google Scholar 

  26. E. Le Borgne, “The Influence of Iron on the Magnetic Properties of the Soil and on Those Schists and Granite,” Ann. Geophys. 16(2), 159–195 (1960).

    Google Scholar 

  27. D. R. Lovley, “Dissimilatory Fe(III) and Mn(IV) Reduction,” Microbiol. Rev. 55(2), 259–287 (1991).

    Google Scholar 

  28. B. A. Maher and R. M. Taylor, “Formation of Ultrafine Grained Magnetite in Soils,” Nature, 336, 368–370 (1988).

    Article  Google Scholar 

  29. B. A. Maher and R. Thompson, “Paleorainfall Reconstructions from Pedogenic Magnetic Susceptibility Variations in the Chinese Loess and Paleosols,” Quat. Res. 44, 383–391 (1995).

    Article  Google Scholar 

  30. D. M. Pearsall, “Paleoethnobotany: A Handbook of Procedures,” 2nd ed., (Academic, San Diego, CA, 2002).

    Google Scholar 

  31. M. Vargas, K. Kashefi, E. L. Blunt-Harris, and D. R. Lovley, “Microbiological Evidence for Fe(III) Reduction on Early Earth,” Nature 39, 65–67 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.V. Mozharova, V.V. Pronina, A.V. Ivanov, S.A. Shoba, A.M. Zagurskii, 2007, published in Pochvovedenie, 2007, No. 6, pp. 707–720.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mozharova, N.V., Pronina, V.V., Ivanov, A.V. et al. The formation of magnetic ferric oxides in soils over underground gas storage reservoirs. Eurasian Soil Sc. 40, 636–648 (2007). https://doi.org/10.1134/S1064229307060051

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229307060051

Keywords

Navigation