Skip to main content
Log in

Ferrihydrite in soils

  • Mineralogy and Micromorphology of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Ferrihydrite—an ephemeral mineral—is the most active Fe-hydroxide in soils. According to modern data, the ferrihydrite structure contains tetrahedral lattice in addition to the main octahedral lattice, with 10–20% of Fe being concentrated in the former. The presence of Fe tetrahedrons influences the surface properties of this mineral. The chemical composition of ferrihydrite samples depends largely on the size of lattice domains ranging from 2 to 6 nm. Chemically pure ferrihydrite rarely occurs in the soil; it usually contains oxyanion (SiO14 4-, PO4 3-) and cation (Al3+) admixtures. Aluminum replace Fe3+ in the structure with a decrease in the mineral particle size. Oxyanions slow down polymerization of Fe3+ aquahydroxomonomers due to the films at the surface of mineral nanoparticles. Si- and Al-ferrihydrites are more resistant to the reductive dissolution than the chemically pure ferrihydrite. In addition, natural ferrihydrite contains organic substance that decreases the grain size of the mineral. External organic ligands favor ferrihydrite dissolution. In the European part of Russia, ferrihydrite is more widespread in the forest soils than in the steppe soils. Poorly crystallized nanoparticles of ferrihydrite adsorb different cations (Zn, Cu) and anions (phosphate, uranyl, arsenate) to immobilize them in soils; therefore, ferrihydrite nanoparticles play a significant role in the biogeochemical cycle of iron and other elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. N. Vodyanitskii, “Iron hydroxides in soils: a review of publications,” Eurasian Soil Sci. 43 (11), 1244–1254 (2010). doi 10.1134/S1064229310110074

    Article  Google Scholar 

  2. Yu. N. Vodyanitskii and A. V. Sivtsov, “Formation of ferrihydrite, ferroxyhyte, and vernadite in soil,” Eurasian Soil Sci. 37 (8), 863–875 (2004).

    Google Scholar 

  3. Y. N. Vodyanitskii and V. G. Mineev, “Degradation of nitrates with the participation of Fe(II) and Fe(0) in groundwater: a review,” Eurasian Soil Sci. 48 (2), 139–147 (2015). doi 10.1134/S1064229315070121

    Article  Google Scholar 

  4. L. A. Vorob’eva, Theory and Methods of the Chemical Analysis of Soils (Moscow State Univ., 1995) [in Russian].

    Google Scholar 

  5. The Role of Supergene Iron Oxides in Geological Processes (Nauka, Moscow, 1975) [in Russian].

  6. V. A. Drits, A. I. Gorshkov, B. A. Sakharov, A. L. Salyn’, A. Manso, and A. V. Sivtsov, “Phase transformations of ferrihydrite at the heating in oxidative and reductive environment,” Litol. Polezn. Iskop., No. 1, 76–84 (1995.

    Google Scholar 

  7. S. V. Zonn, Iron in Soils (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  8. I. S. Kaurichev, N. P. Panov, N. N. Rozov, Stratonovich, and P. D. Fokin, Soil Science (Kolos, Moscow, 1982) [in Russian].

    Google Scholar 

  9. A. I. Perel’man and N. S. Kasimov, Geochemistry of Landscape (Astreya-2000, Moscow, 1999) [in Russian].

    Google Scholar 

  10. V. I. Savich, I. S. Kaurichev, L. L. Shishov, Kh. A. Amerguzhin, and O. D. Sidorenko, Redox Processes in Soils, Agronomic Assessment, and Regulation (Kostonai, 1999) [in Russian].

    Google Scholar 

  11. T. A. Sorokina, Candidate’s Dissertation in Chemistry (Moscow, 2014).

    Google Scholar 

  12. C. F. J. Apello, M. J. J. van der Weiden, C. Tournassat, and L. Chalet, “Surface complexation of ferrous iron and carbonate on ferrihydrite and mobilization of arsenic,” Environ. Sci. Technol. 36, 3096–3103 (2002).

    Article  Google Scholar 

  13. S. Audry, G. Blanc, J. Schafer, G. Chaillou, and S. Robert, “Early diagenesis of trace metals (Cd, Cu, Co, Ni, U, Mo, V) in the freshwater reaches of macrotidal estuary,” Geochim. Cosmochim. Acta 70, 2264–2282 (2006).

    Article  Google Scholar 

  14. V. Barron, N. Galvez, M. F. Hochella, Jr., and J. Torrent, “Epitaxial overgrowth of goethite on hematite synthesized in phosphate media: a scanning force and transmission electron microscopy study,” Am. Miner. 82, 1091–1100 (1997).

    Article  Google Scholar 

  15. T. S. Berquo, S. K. Banerjee, R. G. Ford, R. L. Penn, and T. Pichler, “High crystallinity Si-ferrihydrite: an insight into its Neel temperature and size dependence of magnetic properties,” J. Geophys. Res. 112 (B02102), 1–12 (2007).

    Article  Google Scholar 

  16. D. D. Boland, R. N. Collins, T. E. Payne, and T. D. Waite, “Effect of amorphous Fe(III) oxide transformation on the Fe(II)-mediated reduction of U(VI),” Environ. Sci. Technol. 45, 1327–1333 (2011).

    Article  Google Scholar 

  17. J. Bosch, K. Heister, T. Hofmann, and R. U. Meckenstock, “Nanosized iron oxide colloids strongly enhance microbial iron reduction,” Appl. Environ. Microbiol. 76, 184–189 (2010).

    Article  Google Scholar 

  18. P. Bose and A. Sharma, “Role of iron on controlling speciation and mobilization of arsenic in subsurface environment,” Water Res. 36, 4916–4926 (2002).

    Article  Google Scholar 

  19. R. J. Bowel, “Sorption of arsenic by iron oxides and oxyhydroxides in soils,” Appl. Geochem. 9, 279–286 (1994).

    Article  Google Scholar 

  20. J. Braunschweig, C. Klier, C. Schroder, M. Handel, J. Bosch, K. U. Totsche, and R. U. Meckenstock, “Citrate influences microbial Fe hydroxide reduction via a dissolution-disaggregation mechanism,” Geochim. Cosmochim. Acta 139, 434–446 (2014).

    Article  Google Scholar 

  21. A. C. Cismasu, C. M. Levard, F. M. Michel, and G. E. Brown Jr., “Properties of impurity-bearing ferrihydrite II. Insights into the surface composition of Aland Si-bearing ferrihydrite from Zn(II) sorption experiments and Zn K-edge X-ray absorption spectroscopy,” Geochim. Cosmochim. Acta 119, 46–60 (2012).

    Article  Google Scholar 

  22. A. C. Cismasu, F. M. Michel, A. T. Tcaciuc, T. Tyliszczak, and G. E. Brown Jr., “Composition and structural aspects of naturally occurring ferrihydrite,” C. R. Geosci. 343, 210–218 (2011).

    Article  Google Scholar 

  23. A. C. Cismasu, F. M. Michel, J. F. Stebbins, C. Lenard, and G. E. Brown Jr., “Properties of impurity-bearing ferrihydrite I. Effects of Al content and precipitation rate on the structure of 2-line ferrihydrite,” Geochim. Cosmochim. Acta 92, 275–291 (2012).

    Article  Google Scholar 

  24. A. C. Cismasu, F. M. Michel, A. T. Tcaciuc, and G. E. Brown Jr., “Properties of impurity-bearing ferrihydrite III. Effects of Si on the structure of 2-line ferrihydrite,” Geochim. Cosmochim. Acta 133, 168–185 (2014).

    Article  Google Scholar 

  25. S. Dixit and J. G. Hering, “Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility,” Environ. Sci. Technol. 37, 4182–4189 (2003).

    Article  Google Scholar 

  26. R. A. Eggleton and R. W. Fitzpatric, “New data and a revised structural model for ferrihydrite,” Clays Clay Miner. 36, 111–124 (1988).

    Article  Google Scholar 

  27. E. B. Ekstrom, D. R. Learman, A. S. Madden, and C. M. Hansel, “Contrasting effects of Al substitution on microbial reduction of Fe (III) (hydr)oxides,” Geochim. Cosmochim. Acta 74, 7086–7099 (2010).

    Article  Google Scholar 

  28. J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, D. W. Kukkadapu, J. P. McKiley, S. M. Heald, C. Liu, and A. E. Plymale, “Reduction of by sediment-associated biogenic Fe(II),” Geochim. Cosmochim. Acta 68, 3171–3187 (2004).

    Article  Google Scholar 

  29. C. C. Fuller, J. A. Davis, and G. A. Waychunas, “Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and co-precipitation,” Geochim. Cosmochim. Acta 57, 2271–2282 (1993).

    Article  Google Scholar 

  30. N. Galvez, V. Barron, and J. Torrent, “Effect of phosphate on crystallization of hematite, goethite, and lepidocrocite from ferrihydrite,” Clays Clay Miner. 47, 304–311 (1999).

    Article  Google Scholar 

  31. S. Goldberg and C. T. Johnston, “Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling,” J. Colloid Inter. Sci. 234, 204–216 (2001).

    Article  Google Scholar 

  32. C. M. Hansel, S. G. Bener, and S. Fendorf, “Competing Fe(II)-induced mineralization pathways of ferrihydrite,” Environ. Sci. Technol. 39, 7147–7153 (2005).

    Article  Google Scholar 

  33. M. F. Hochella, S. K. Lower, P. A. Maurice, R. L. Penn, N. Sahai, D. L. Sparks, and B. S. Twining, “Nanominerals, mineral nanoparticles, and Earth systems,” Science 319, 1631–1635 (2008).

    Article  Google Scholar 

  34. T. A. Hudson, P. G. Allen, L. J. Terminello, M. A. Denecke, and T. Reich, “Polarized X-rayabsorption spectroscopy of the uranyl ion: comparison of experiment and theory,” J. Phys. Rev. B 54, 156–165 (1996).

    Article  Google Scholar 

  35. B. P. Jackson and W. P. Miller, “Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species from iron oxides,” Soil Sci. Soc. Am. J. 64, 1616–1622 (2000).

    Article  Google Scholar 

  36. A. Jain and R. H. Loeppert, “Effect of competing anions on the adsorption of arsenate and arsenite by ferrigydrite,” J. Environ. Qual. 29, 1422–1430 (2004).

    Article  Google Scholar 

  37. J. L. Jambor and J. E. Dutrizac, “Occurrence and constitution of natural and synthetic ferrihydrite, a widespread oxyhydroxide,” Chem. Rev. 98, 2549–2585 (1998).

    Article  Google Scholar 

  38. D. E. Janney, J. M. Cowley, and P. R. Buseck, “Transmission electron microscopy of synthetic 2-and 6-line ferrihydrite,” Clays Clay Miner. 48, 111–119 (2000).

    Article  Google Scholar 

  39. M. G. Johnson and M. B. McBride, “Mineralogical and chemical characteristics of Adirondack spodosols: evidence for para-and noncrystalline minerals,” Soil Sci. Soc. Am. J. 53, 482–490 (1989).

    Article  Google Scholar 

  40. A. M. Jones, R. N. Collins, J. Rose, and T. D. Waite, “The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals,” Geochim. Cosmochim. Acta 73, 4409–4422 (2009).

    Article  Google Scholar 

  41. R. Kaegi, A. Voegelin, D. Folini, and S. J. Hug, “Effect of phosphate, silicate, and Ca on the morphology, structure and elemental composition of Fe(III)-precipitates formed in aerated Fe(II) and As(III) containing water,” Geochim. Cosmochim. Acta 74, 5798–5816 (2010).

    Article  Google Scholar 

  42. H. Kodama and C. Wang, “Distribution and characterization of noncrystalline inorganic components in Spodosols and Spodosol-like soils,” Soil Sci. Soc. Am. J. 53, 526–533 (1989).

    Article  Google Scholar 

  43. D. R. Lovley, E. J. P. Phillips, Y. A. Gorby, and E. R. Landa, “Biological reduction of uranium,” Nature 350, 413–416 (1991).

    Article  Google Scholar 

  44. W. Luo and B. Gu, “Dissolution and mobilization of uranium in a reduced sediment by natural humic substances under anaerobic condition,” Environ. Sci. Technol. 43, 152–156 (2009).

    Article  Google Scholar 

  45. F. Maillot, G. Morin, Y. Wang, D. Bonnin, P. Ildefonse, C. Chaneac, and G. Calas, “New insight into the structure of nanocrystalline ferrihydrite: EXAFS evidence for tetrahedrally coordinated iron(III),” Geochim. Cosmochim. Acta 75, 2708–2720 (2011).

    Article  Google Scholar 

  46. A. Manceau and V. A. Drits, “Local structure of ferrihydrite and feroxyhite by EXAFS spectroscopy,” Clay Miner. 28, 165–184 (1993).

    Article  Google Scholar 

  47. B. A. Manning and S. Goldberg, “Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals,” Soil Sci. Soc. Am. J. 60, 121–131 (1996).

    Article  Google Scholar 

  48. T. A. Marshall, K. Morris, G. T. W. Law, F. R. Livens, J. F. W. Mosselmans, P. Bots, and S. Shaw, “Incorporation of uranium into hematite during crystallization from ferrihydrite,” Environ. Sci. Technol. 48, 3724–3731 (2014).

    Article  Google Scholar 

  49. C. E. Martinez and M. B. McBride, “Co-precipitates of Cd, Cu, Pb and Zn in iron oxides: solid phase transformation and metal solubility after aging and thermal treatment,” Clays Clay Miner. 46, 537–545 (1998).

    Article  Google Scholar 

  50. M. S. Massey, J. S. Lezama-Pacheco, M. E. Jones, E. S. Ilton, J. M. Cerrato, J. R. Bargar, and S. Fendorff, “Competing retention pathways of uranium upon reaction with Fe(II),” Geochim. Cosmochim. Acta 142, 166–185 (2014).

    Article  Google Scholar 

  51. J. P. McKinley, J. M. Zachara, C. Liu, S. C. Heald, A. I. Prenitzer, and B. W. Kempshall, “Microscale controls on the fate of contaminant uranium in the vadose zone, Hanford Site, Washington,” Geochim. Cosmochim. Acta 70, 1873–1887 (2006).

    Article  Google Scholar 

  52. F. M. Michel, V. Barron, J. Torrent, M. P. Morales, et al., “Ordered ferromagnetic form of ferrihydrite reveals links among structure, composition, and magnetism,” Proc. Natl. Acad. Sci. U.S.A. 107, 2787–2792 (2010).

    Article  Google Scholar 

  53. C. Mikutta, “X-ray absorption spectroscopy study on the effect of hydro-xybenzoic acids on the formation and structure of ferrihydrite,” Geochim. Cosmochim. Acta 75, 5122–5139 (2011).

    Article  Google Scholar 

  54. C. Mikutta, R. Mikutta, S. Bonneville, F. Wagner, A. Voegelin, I. Christl, and R. Kretzchmar, “Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part I: Characterization,” Geochim. Cosmochim. Acta 72, 1111–1127 (2008).

    Article  Google Scholar 

  55. C. Mikutta, C. Schroder, and F. M. Michel, “Total X-ray scattering, EXAFS, and Mossbauer spectroscopy analyses of amorphous ferric arsenate and amorphous ferric phosphate,” Geochim. Cosmochim. Acta 140, 708–719 (2014).

    Article  Google Scholar 

  56. R. T. Nickson, J. M. McArthur, P. Ravenscroft, W. G. Burgess, and K. M. Ahmed, “Mechanism of arsenic release to groundwater, Bangladesh, and West Bengal,” Appl. Geochem. 15, 403–413 (2000).

    Article  Google Scholar 

  57. C. R. Paige, W. J. Snodgrass, R. V. Nicholson, J. M. Scharer, and H. He, “The effect of phosphate on the transformation of ferrihydrite into crystalline products in alkaline media,” Water, Air, Soil Pollut. 97, 397–412 (1997).

    Google Scholar 

  58. D. Peak and T. Regier, “Direct observation of tetrahedrally coordinated iron(III) in ferrihydrite,” Environ. Sci. Technol. 46, 3163–3168 (2012).

    Article  Google Scholar 

  59. H. D. Pedersen, D. Postma, and R. Jakobsen, “Release of arsenic associated with the reduction and transformation of iron oxides,” Geochim. Cosmochim. Acta 70, 4116–4129 (2006).

    Article  Google Scholar 

  60. G. S. Pokrovski, J. Schott, F. Farger, and J.-L. Hazemann, “Iron (III)-silica interaction in aqueous solution: Insights from X-ray absorption fine structure spectroscopy,” Geochim. Cosmochim. Acta 67, 3559–3573 (2003).

    Article  Google Scholar 

  61. I. C. Regelink, A. Voegelin, L. Weng, G. F. Poopmans, and R. N. J. Comans, “Characterization of colloidal Fe from soils using field-flow fractionation and Fe K-edge X-ray absorption spectroscopy,” Environ. Sci. Technol. 48, 4307–4316 (2014).

    Article  Google Scholar 

  62. E. E. Roden and M. M. Urrutia, “Influence of biogenic Fe(II) on bacterial crystalline Fe(III) oxide reduction,” Geomicrobiol. J. 19, 209–251 (2002).

    Article  Google Scholar 

  63. E. E. Roden and J. M. Zachara, “Microbial reduction of crystalline Fe(III) oxides: influence of oxide surface area and potential for cell growth,” Environ. Sci. Technol. 30, 1618–1628 (1996).

    Article  Google Scholar 

  64. J. Rose, A. Manceau, J.-Y. Bottero, A. Masion, and F. Garcia, “Nucleation and growth mechanisms of Fe oxyhydroxide in the presence of PO4 ions. 1. Fe K-edge EXAFS study,” Langmuir 12, 6701–6707 (1996).

    Article  Google Scholar 

  65. J. D. Russell, B. A. Goodman, and A. R. Fraser, “Infrared and Mossbauer studies of reduced nontronites,” Clays Clay Miner. 27, 63–71 (1979).

    Article  Google Scholar 

  66. U. Schwertmann, “Occurrence and formation of iron oxides in various pedoenvironment,” in Iron in Soils and Clay Minerals (Reidel, Dordrecht, 1988), pp. 267–308.

    Chapter  Google Scholar 

  67. U. Schwertmann and R. M. Taylor, “Iron oxides,” in Minerals in Soil Environments, Ed. by J. B. Dixon and S. B. Weed (Soil Science Society of America, Madison, WI, 1977), pp. 145–180.

    Google Scholar 

  68. D. L. Sedlak and P. G. Chan, “The reduction of Cr(VI) by Fe(II) in natural water,” Geochim. Cosmochim. Acta 61, 2185–2192 (1997).

    Article  Google Scholar 

  69. J. M. Senko, J. D. Istok, J. M. Suflita, and L. R. Krumholz, “In-situ evidence for uranium immobilization and remobilization,” Environ. Sci. Technol. 36, 1491–1496 (2002).

    Article  Google Scholar 

  70. D. M. Sherman and S. R. Randall, “Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab into molecular geometries and EXARS spectroscopy,” Geochim. Cosmochim. Acta 67, 4224–4230 (2003).

    Article  Google Scholar 

  71. W. Stumm, Chemistry of the Solid-Water Interface (Wiley, New York, 1992).

    Google Scholar 

  72. D. Suter, C. Siffert, B. Sulzberger, and W. Stumm, “Catalytic dissolution of iron(III) (hydr)oxides by oxalic acid in the presence of Fe(II),” Naturwissenschaften 75, 571–573 (1988).

    Article  Google Scholar 

  73. P.-J. Thibault, D. G. Rancourt, R. J. Evans, E. John, and J. E. Dutrizac, “Mineralogical confirmation of a near-P: Fe = 1: 2 limiting stoichiometric ratio in colloidal P-bearing ferrihydrite-like hydrous ferric oxide,” Geochim. Cosmochim. Acta 73, 364–376 (2009).

    Article  Google Scholar 

  74. H. A. Thompson, G. E. Brown Jr., and G. A. Pars, “XAFS spectroscopic study of uranyl in solids and aqueous solution,” Am. Miner. 82, 483–496 (1997).

    Article  Google Scholar 

  75. A. Voegelin, R. Kaegi, J. Frommer, D. Vantelon, and S. J. Hug, “Effect of phosphate, silicate, and Ca on the Fe(III)-precipitates formed in aerated Fe(II) and As(III) containing water studied by X-ray absorption spectroscopy,” Geochim. Cosmochim. Acta 74, 164–186 (2010).

    Article  Google Scholar 

  76. G. A. Waychunas, C. S. Kim, and J. F. Banfield, “Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms,” J. Nanopart. Res. 7, 409–433 (2005).

    Article  Google Scholar 

  77. M. Wazne, G. P. Korfiatis, and X. Meng, “Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide,” Environ. Sci. Technol. 37, 3619–3624 (2003).

    Article  Google Scholar 

  78. W.-M. Wu, J. Carley, S. J. Green, J. Luo, et al., “Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface,” Environ. Sci. Technol. 44, 5104–5111 (2010).

    Article  Google Scholar 

  79. N. Yee, S. Shaw, L. G. Benning, and T. N. Nguyen, “The rate of ferrihydrite transformation to goethite via the Fe(II) pathway,” Am. Miner. 91, 92–96 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Vodyanitskii.

Additional information

Original Russian Text © Yu.N. Vodyanitskii, S.A. Shoba, 2016, published in Pochvovedenie, 2016, No. 7, pp. 862–873.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vodyanitskii, Y.N., Shoba, S.A. Ferrihydrite in soils. Eurasian Soil Sc. 49, 796–806 (2016). https://doi.org/10.1134/S1064229316070127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229316070127

Keywords

Navigation