Skip to main content
Log in

Experimental determination of the active organic matter content in some soils of natural and agricultural ecosystems

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

In incubation experiments, the soil supply with carbon of mineralizable (Cmin), potentially mineralizable (Cpm), and active (Cac) organic matter, and of microbial mass (Cmb) in natural and agricultural ecosystems of Moscow region (gray forest soil) and Catalonia (Xerochrept) was assessed based on the measurements of the C-CO2 emission. In the gray forest soil, the Cpm and Cac contents decreased in the following sequence of ecosystems: forest > meadow > unfertilized agrocenosis; in the Xerochrept, forest > pasture > scrub > agrocenoses with organic fertilizer > unfertilized agrocenosis. A method for measurement of the Cmb according to the C-CO2 emission during an 11-to 14-day incubation of previously dried soils is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Aleksandrova, Soil Organic Matter and Its Transformation (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  2. S. A. Blagodatskii, E. V. Blagodatskaya, A. Yu. Gorbenko, and N. S. Panikov, “Rehydration Method for Determining Microbial Biomass in the Soil,” Pochvovedenie, No. 4, 64–71 (1987).

  3. L. A. Ivannikova, SU Patent No. 1 806 375 (1993).

  4. B. M. Kogut, “Principles and Methods of Assessing the Content of Labile Organic Matter in Plowed Soils,” Pochvovedenie, No. 3, 308–316 (2003) [Eur. Soil Sci. 36 (3), 283–290 (2003)].

  5. M. M. Kononova, Soil Organic Matter, Its Nature, Properties, and Methods of Studying (Akad. Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  6. V. N. Kudeyarov, “About the Procedure for Determining Total Nitrogen in Soils and Plants,” Agrokhimiya, No. 11, 125–128 (1972).

  7. V. N. Kudeyarov, “The Nitrogen and Carbon Budget in Soil,” Pochvovedenie, No. 1, 73–82 (1999) [Eur. Soil Sci. 32 (1), 61–69 (1999)].

  8. S. M. Nadezhkin and A. P. Shcherbakov, “Anthropogenic Evolution of Chernozem Humus Status in the Forest-Steppe of the Volga Region,” in Anthropogenic Evolution of Chernozems (Voronezh, 2000), pp. 145–171 [in Russian].

  9. D. S. Orlov, Soil Humus Acids and the General Theory of Humification (Mosk. Gos. Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  10. D. S. Orlov, Soil Chemistry (Mosk. Gos. Univ., Moscow, 1985) [in Russian].

    Google Scholar 

  11. L. S. Travnikova, “The Main Principles and Methods for the Quantitative Estimation of Different Categories of Organic Matter,” in Organic Matter of Arable Soils (Moscow, 1987), pp. 44–51 [in Russian].

  12. F. Kh. Khaziev, System-Ecological Analysis of Enzymatic Activity in Soils (Nauka, Moscow, 1982).

    Google Scholar 

  13. J. P. E. Anderson and K. H. Domsch, “A Physiological Method for the Quantitative Measurement of Microbial Biomass in Soils,” Soil Biol. Biochem. 10, 215–221 (1978).

    Google Scholar 

  14. W. Borken, E. A. Davidson, K. Savage, J. Gaudinski, and S. E. Trumbore, “Drying and Wetting Effects on Carbon Dioxide Release from Organic Horizons,” Soil Sci. Soc. Am. J. 67, 1888–1896 (2003).

    Google Scholar 

  15. H. P. Collins, E. T. Elliott, K. Paustian, et al., “Soil Carbon Pools and Fluxes in Long-Term Corn Belt Agroecosystems,” Soil Biol. Biochem. 32, 157–168 (2000).

    Article  Google Scholar 

  16. N. Fierer and J. P. Schimel, “A Proposed Mechanism for the Pulse in Carbon Dioxide Production Commonly Observed Following the Rapid Rewetting of a Dry Soil,” Soil Sci. Soc. Am. J. 67, 798–805 (2003).

    Google Scholar 

  17. A. J. Franzluebbers, R. L. Hancy, C. W. Honeycutt et al., “Climatic Influences on Active Fractions of Soil Organic Matter,” Soil Biol. Biochem. 33, 1103–1111 (2001).

    Article  Google Scholar 

  18. A. J. Franzluebbers, R. L. Haney, C. W. Honeycutt, et al., “Flush of Carbon Dioxide Following Rewetting of Dried Soils Relates to Active Organic Pools,” Soil Sci. Soc. Am. J. 64, 613–623 (2000).

    Google Scholar 

  19. J. B. Gaudinski, S. E. Trumbore, E. A. Davidson, and S. Zheng, “Soil Carbon Cycling in a Temperate Forest: Radiocarbon-Based Estimates of Residence Times, Sequestration Rates, and Partitioning of Fluxes,” Biogeochemistry. 51, 33–69 (2000).

    Article  Google Scholar 

  20. B. Glaser, J. Lehmann, M. Fiihrboter, et al., “Carbon and Nitrogen Mineralization in Cultivated and Natural Savanna Soils of Northern Tanzania,” Biol. Fertil. Soils 33, 301–309 (2001).

    Article  Google Scholar 

  21. J. M. Gonzalez and D. A. Laird, “Carbon Sequestration in Clay Mineral Fractions from 14C-Labeled Plant Residues,” Soil Sci. Soc. Am. J. 67, 1715–1720 (2003).

    Google Scholar 

  22. K. R. Islam, R. R. Weil, C. R. Mulchi, and S. D. Glenn, “Freeze-Dried Soil Extraction Method for the Measurement of Microbial Biomass C,” Biol. Fertil. Soils 24, 205–210 (1997).

    Article  Google Scholar 

  23. D. S. Jenkinson and J. H. Rayner, “The Turnover of Soil Organic Matter in Some of the Rothamsted Classical Experiments,” Soil Sci. 123(5), 298–305 (1977).

    Google Scholar 

  24. D. S. Jenkinson and D. S. Powlson, “The Effects of Biocidal Treatment on Metabolism in Soil: V. A Method for Measuring Soil Biomass,” Soil Biol. Biochem. 8, 209–213 (1976).

    Google Scholar 

  25. J. N. Ladd, M. Amato, P. R. Grace, and J. A. Van Veen, “Simulation of 14C Turnover through the Microbial Biomass in Soil Incubated with 14C-Labelled Plant Residues,” Soil Biol. Biochem. 27, 777–783 (1995).

    Article  Google Scholar 

  26. J. Magid, C. Kjaergaard, A. Gorrissen, and P. J. Kuikman, “Drying and Rewetting of a Loamy Sand Soil Did Not Increase the Turnover of Native Organic Matter, but Retarded the Decomposition of Added 14C-Labelled Plant Material,” Soil Biol. Biochem. 31, 595–602 (1999).

    Article  Google Scholar 

  27. R. Martens, “Current Methods for Measuring Microbial Biomass C,” Biol. Fertil. Soils 19, 87–99 (1995).

    Article  Google Scholar 

  28. J. P. Martin, K. Haider, W. J. Farmer, and E. Fustec-Mathon, “Decomposition and Distribution of Residual Activity of Some 14C-Microbial Polysaccharides and Cells, Glucose, Cellulose, and Wheat Straw in Soil,” Soil Biol. Biochem. 6, 221–230 (1974).

    Article  Google Scholar 

  29. T. Mueller, J. Magid, L. S. Jensen, et al., “Soil C and Turnover after Incorporation of Chopped Maize, Barley Straw, and Blue Grass in the Field: Evaluation of the DAISY Soil-Organic-Matter Submodel,” Ecol. Model. 111, 1–15 (1998).

    Article  Google Scholar 

  30. D. W. Nelson, J. P. Martin, AND J. O. Ervin, “Decomposition of Microbial Cells and Components in Soil and Their Stabilization through Complexing with Model Humic Acid-Type Phenolic Polymers,” Soil Sci. Soc. Am. J. 43, 84–88 (1979).

    Google Scholar 

  31. B. Nicolardot, J. A. E. Molina, M. R. Allard, “C and N Fluxes between Pools of Soil Organic Matter: Model Calibration with Long-Term Incubation Data,” Soil Biol. Biochem. 26, 235–243 (1994).

    Google Scholar 

  32. W. J. Parton, D. S. Schimel, C. V. Cole, and D. S. Ojima, “Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands,” Soil Sci. Soc. Am. J. 51, 1173–1179 (1987).

    Google Scholar 

  33. E. A. Paul, D. Harris, H. P. Collins, et al., “Evolution of CO2 and Soil Carbon Dynamics in Biologically Managed Row-Crop Agroecosystems,” Appl. Soil Ecol. 11, 53–65 (1999).

    Article  Google Scholar 

  34. E. A. Paul, H. P. Collins, and S. W. Leavitt, “Dynamics of Resistant Soil Carbon of Midwestern Agricultural Soils Measured by Naturally Occurring 14C Abundance,” Geoderma 104, 239–256 (2001).

    Article  Google Scholar 

  35. E. A. Paul, S. J. Morris, J. Six, et al., “Interpretation of Soil Carbon and Nitrogen Dynamics in Agricultural and Afforested Soils,” Soil Sci. Soc. Am. J. 67, 1620–1628 (2003).

    Google Scholar 

  36. J. Porta, M. Lopez Acevedo, and C. Roquero, Edafologia para la agricultura y el medio ambiente (Mundi Prensa, Madrid, 1999).

    Google Scholar 

  37. P. F. A. M. Romkens, J. Van der Plicht, and J. Hassink, “Soil Organic Matter Dynamics after Conversion of Arable Land to Pasture,” Biol. Fertil. Soils 28, 277–284 (1999).

    Google Scholar 

  38. M. Stemmer, K. Roth, and E. Kandeler, “Carbon Mineralization and Microbial Activity in a Field Site Trial Used for 14C Turnover Experiments over a Period of 30 Years,” Biol. Fertil. Soils 31, 294–302 (2000).

    Article  Google Scholar 

  39. E. D. Vance, P. C. Brookes, and D. S. Jenkinson, “An Extraction Method for Measuring Soil Microbial Biomass C,” Soil Biol. Biochem. 19(6), 703–707 (1987).

    Google Scholar 

  40. M. Von Lützow, J. Leifeld, M. Kainz, et al., “Indications for Soil Organic Matter Quality in Soils under Different Management,” Geoderma 105, 243–258 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.M. Semenov, I.K. Kravchenko, L.A. Ivannikova, T.V. Kuznetsova, N.A. Semenova, M. Gispert, J. Pardini, 2006, published in Pochvovedenie, 2006, No. 3, pp. 282–292.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semenov, V.M., Kravchenko, I.K., Ivannikova, L.A. et al. Experimental determination of the active organic matter content in some soils of natural and agricultural ecosystems. Eurasian Soil Sc. 39, 251–260 (2006). https://doi.org/10.1134/S1064229306030033

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229306030033

Keywords

Navigation