Skip to main content
Log in

Specific features of determination of the net production of nitrous oxide by soils

  • Soil Biology
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The rate of the net nitrous oxide (N2O) production, the content of microbial biomass carbon (Cmic), and its portion in the total soil organic carbon (Corg) were determined in the samples from podzol, soddy-podzolic soils, gray forest soils, chernozems, burozems, and carbolithozems of natural, arable, and fallow ecosystems in Kostroma, Vladimir, Moscow, Kaluga, Voronezh oblasts, and Krasnodar region. The most sustainable N2O production was found in the soils enriched with glucose or its mixture with ammonium sulfate at 22°C upon the preliminary incubation of the soil samples (7 days, 60% of water holding capacity). In the profiles of forest soils, a direct correlation was found between the N2O production and the Cmic content (r = 0.74, p ≤ 0.05, n = 18). In the upper mineral layers (0–10 cm) of soddy-podzolic soils of the cropland, fallow, young, secondary and native forests, the inverse relationship between the N2O production and the Cmic content (r = −0.75, p ≤ 0.05, n = 6) was observed. In a series of the fallowed, cultivated, and forest soils, the net N2O production decreased (239, 69, and 38 ng N2O-N × 10−3/g per h), and the Cmic content and Cmic: Corg ratio increased (181, 569, and 1020 μg C/g; 1.4, 2.6, and 3.0%, respectively) attesting to the increasing N2O flux in the anthropogenically transformed ecosystems. The application of cycloheximide (20–50 mg/g) to the soil lowered the N2O production by 69–99%, which pointed to a significant contribution of fungi to this process. An approach to separate nitrification and denitrification in the soil using low concentrations of acetylene (1.8 Pa) was proposed. The conditions of preparation of the soil samples for sustainable detection of N2O production were specified. It was shown that this process is tightly related to the soil microbial biomass and its fungal component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Ananyeva, E. A. Susyan, E. V. Stolnikova, I. M. Ryzhova, and E. O. Bocharnikova, “Microbial biomass carbon and the microbial carbon dioxide production by soddy-podzolic soils in postagrogenic biogeocenosis and in native spruce forests of the southern taiga (Kostroma oblast),” Eurasian Soil Sci. 42(9), 1029–1037 (2009).

    Article  Google Scholar 

  2. N. D. Ananyeva, E. V. Stolnikova, L. M. Polyanskaya, and D. G. Zvyagintzev, “Fungal to bacterial biomass ratio in the forests soil profile,” Biol. Bull. 37(3), 308–317 (2010).

    Article  Google Scholar 

  3. N. D. Ananyeva, E. V. Stolnikova, E. A. Susyan, and A. K. Khodzhaeva, “The fungal and bacterial biomass (selective inhibition) and the production of CO2 and N2O by soddy-podzolic soils of postagrogenic biogeocenoses,” Eurasian Soil Sci. 43(11), 1287–1293 (2010).

    Article  Google Scholar 

  4. M. L. Gitarskii, A. A. Romanovskaya, R. T. Karaban’, I. M. Nazarov, and D. E. Konyushkov, “Nitrous oxide emission from the use of mineral fertilizers in Russia,” Eurasian Soil Sci. 33(8), 822–827 (2000).

    Google Scholar 

  5. V. N. Kudeyarov, “Nitrogen cycle and nitrous oxide production,” Eurasian Soil Sci. 32(8), 892–901 (1999).

    Google Scholar 

  6. A. V. Kurakov, A. I. Popov, and I. V. Evdokimov, “Heterotrophic nitrification in soils,” Eurasian Soil Sci. 34(10), 1116–1124 (2001).

    Google Scholar 

  7. O. V. Menyailo, Doctoral Dissertation in Biology (Krasnoyarsk, 2007).

  8. V. M. Semenov, T. V. Kuznetsova, A. K. Khodzhaeva, N. A. Semenova, and V. N. Kudeyarov, “Soil emission of nitrous oxide: influence of natural and agrogenic factors,” Agrokhimiya, No. 1, 30–39 (2004).

    Google Scholar 

  9. A. L. Stepanov, Microbial Transformation of Greenhouse Gases in Soils (Geos, Moscow, 2011) [in Russian].

    Google Scholar 

  10. M. M. Umarov, A. V. Kurakov, and A. L. Stepanov, Microbial Transformation of Nitrogen in Soil (Geos, Moscow, 2007) [in Russian].

    Google Scholar 

  11. A. M. Adkins and R. Knowles, “Reduction of nitrous oxide by a soil Cytophaga in the presence of acetylene and sulfide,” FEMS Microbiol. Lett. 23, 171–174 (1984). doi: 10.1111/j.1574-6968.1984.tb01056.x

    Article  Google Scholar 

  12. P. Ambus and S. Christensen, “Spatial and seasonal nitrous oxide and methane fluxes in Danish forest-, grassland-, and agroecosystems,” J. Environ. Qual. 24, 993–1001 (1995). doi: 10.2134/jeq1995.00472425002400050031x

    Article  Google Scholar 

  13. N. D. Ananyeva, E. A. Susyan, O. V. Chernova, and S. Wirth, “Microbial respiration activities of soils from different climatic regions of European Russia,” Eur. J. Soil Biol. 44(2), 147–157 (2008). doi: 10.1016/j.ejsobi.2007.05.002

    Article  Google Scholar 

  14. J. P. E. Anderson and K. H. Domsch, “A physiological method for the quantitative measurement of microbial biomass in soils,” Soil Biol. Biochem. 10(3), 215–221 (1978). doi: 10.1016/0038-0717(78)90099-8

    Article  Google Scholar 

  15. O. Badr and S. D. Probert, “Sources of atmospheric nitrous oxide,” Appl. Energy 42, 129–176 (1992). doi: 10.1016/0306-2619(92)90059-K

    Article  Google Scholar 

  16. J. Bandidas, A. Vermoesen, C. J. de Groot, and O. van Cleemput, The effect of different moisture regimes and soil characteristics of nitrous oxide emission and consumption by different soils,” Soil Sci. 158(2), 106–114 (1994). doi: 10.1097/00010694-199408000 00004

    Article  Google Scholar 

  17. P. Berg, L. Klemedtsson, and T. Rosswall, “Inhibitory effect of low partial pressures of acetylene on nitrification,” Soil Biol. Biochem. 14, 301–303 (1982). doi: 10.1016/0038-0717(82)90041-4

    Article  Google Scholar 

  18. E. V. Blagodatskaya, M. Dannenmann, R. Gasche, and K. Butterbach-Bahl, “Microclimate and forest management alter fungal-to-bacterial ratio and N2O-emission during rewetting in the forest floor and mineral soil of mountainous beech forests,” Biogeochemistry 97, 55–70 (2010). doi: 10.1007/s10533-009-9310-3

    Article  Google Scholar 

  19. J. M. Bollag and G. Tung, “Nitrous oxide release by soil fungi,” Soil Biol. Biochem. 4, 271–276 (1972). doi: 10.1016/0038-0717(72)90021-1

    Article  Google Scholar 

  20. A. F. Bouwman, “Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere,” in Soils and Greenhouse Effect, Ed. by A. F. Bouwman (Wiley, New York, 1990, pp. 61–127.

    Google Scholar 

  21. J. M. Bremner and A. M. Blackmer, “Terrestrial nitrification as a source of atmospheric nitrous oxide,” in Denitrification, Nitrification, and Atmospheric Nitrous Oxide, Ed. by C. C. Delwiche (Wiley, New York, 1981), pp. 151–170.

    Google Scholar 

  22. S. Castaldi, “Responses of nitrous oxide, dinitrogen, and carbon dioxide production and oxygen consumption to temperature in forest and agricultural light-textured soils determined by model experiment,” Biol. Fertil. Soils 32(1), 67–72 (2000). doi: 10.1007/s003740000218

    Article  Google Scholar 

  23. S. Castaldi and K. A. Smith, “Effect of cycloheximide on N2O and production in a forest and an agricultural soil,” Biol. Fertil. Soils 27, 27–34 (1998). doi: 10.1007/s003740050395

    Article  Google Scholar 

  24. C. Ciardi and P. Nannipieri, “A comparison of methods for measuring ATP in soil,” Soil Biol. Biochem. 22, 725–727 (1990). doi: 10.1016/0038-0717(90)90022-R

    Article  Google Scholar 

  25. H. Clayton, J. R. M. Arah, and K. A. Smith, “Measurement of nitrous oxide emissions from fertilized grassland using closed chambers,” J. Geophys. Res.: Atmos. 99(8), 16599–16607 (1994). doi: 10.1029/94JD00218

    Article  Google Scholar 

  26. R. Conrad, “Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O and NO),” Microbiol. Rev. 60(4), 609–640 (1996). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC239458/pdf/600609.pdf. Cited on August 15, 2014.

    Google Scholar 

  27. R. E. Creamer, R. P. O. Schulte, D. Stone, A. Gal, P. H. Krogh, G. Lo Papa, P. J. Murray, G. Pérès, B. Foerster, M. Rutgers, J. P. Sousa, and A. Winding, “Measuring basal soil respiration across Europe: do incubation temperature and incubation period matter?” Ecol. Indic. 36, 409–418 (2014). doi: 10.1016/j.ecolind.2013.08.015

    Article  Google Scholar 

  28. E. A. Davidson, P. A. Matson, P. M. Vitousek, R. Riley, K. Dunkin, G. Garcia-Mendez, and J. M. Maas, “Processes regulating soil emissions of NO and N2O in a seasonally dry tropical forest,” Ecology 74, 130–139 (1993). http://www.jstor.org/stable/1939508

    Article  Google Scholar 

  29. K. E. Dobbie and K. A. Smith, “Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables,” Global Change Biol. 9, 204–218 (2003). doi: 10.1046/j.1365-2486.2003.00563.x

    Article  Google Scholar 

  30. J. M. Duxbury and P. K. McConnaughey, “Effect of fertilizer source on denitrification and nitrous oxide emission in a maize field,” Soil Sci. Soc. Am. J. 50(3), 644–648 (1986). doi: 10.2136/sssaj1986.0361599500500003 0020x

    Article  Google Scholar 

  31. M. K. Firestone, M. S. Smith, R. B. Firestone, and J. M. Tiedje, “The influence of nitrate, nitrite and oxygen on the composition of the gaseous products of denitrification in soil,” Soil Sci. Soc. Am. J. 43(6), 1140–1144 (1979). doi: 10.2136/sssaj1979.03615995004300060016x

    Article  Google Scholar 

  32. K. Haider, A. R. Mosier, and O. Heinemeyer, “Side effects of acetylene on the conversion of nitrate in soil,” J. Plant Nutr. Soil Sci. 146, 623–633 (1983). doi: 10.1002/jpln.19831460510

    Google Scholar 

  33. C. Hénault, X. Devis, J. L. Lucas, and J. C. Germon, “Influence of different agricultural practices (type of crop, form of N-fertilizer) on soil nitrous oxide emissions,” Biol. Fertil. Soils 27, 299–306 (1998). doi: 10.1007/s003740050437

    Article  Google Scholar 

  34. R. K. Hynes and R. Knowles, “Effect of acetylene on autotrophic and heterotrophic nitrification,” Can. J. Microbiol. 28, 334–340 (1982). doi: 10.1139/m82-049

    Article  Google Scholar 

  35. R. K. Hynes and R. Knowles, “Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea,” FEMS Microbiol. Lett. 4, 319–321 (1978). doi: 10.1111/j.1574-6968.1978.tb02889.x

    Article  Google Scholar 

  36. E. R. Ingham and D. C. Coleman, “Effects of streptomycin, cycloheximide, fungizone, captan, carbofuran, cygon, and PCNB on soil microorganisms,” Microb. Ecol. 10, 345–358 (1984). doi: 10.1007/BF02015559

    Article  Google Scholar 

  37. IPCC, Climate Change. The Science of Climate Change (Cambridge University Press, Cambridge, UK, 1995).

    Google Scholar 

  38. IPCC, Climate Change. The Scientific Basis (Cambridge University Press, Cambridge, UK, 2001).

    Google Scholar 

  39. K. Isermann, “Agriculture’s share in the emission of trace gases affecting the climate and some cause-oriented proposals for sufciently reducing this share,” Environ. Pollut. 83, 95–111 (1994). doi: 10.1016/0269-7491(94)90027-2

    Article  Google Scholar 

  40. R. A. Kester, M. E. Meijer, J. A. Libochant, W. de Boer, and H. J. Laanbroek, “Contribution of nitrification and denitrification to the NO and N2O emissions of an acid forest soil, a river sediment and a fertilized grassland soil,” Soil Biol. Biochem. 29(11/12), 1655–1664 (1997). doi: 10.1016/S0038-0717(97)00079-5

    Article  Google Scholar 

  41. K. Killham, “A new perfusion system for the measurement and the characterization of potential rates of soil nitrification,” Plant Soil 97, 267–272 (1987). doi: 10.1007/BF02374949

    Article  Google Scholar 

  42. L. Klemedtsson, B. H. Svensson, T. Lindberg, and T. Rosswall, “The use of acetylene inhibition of nitrous oxide reductase in quantifying denitrification in soil,” Swed. J. Agric. Res. 7, 179–185 (1977).

    Google Scholar 

  43. L. Klemedtsson, B. H. Svensson, and T. Rosswall, “Relationships between soil moisture content and nitrous oxide production during nitrification and denitrification,” Biol. Fertil. Soils 6, 106–111 (1988). doi: 10.1007/BF00257658

    Google Scholar 

  44. R. Lal, “Soil carbon sequestration to mitigate climate change,” Geoderma 123, 1–22 (2004). doi: 10.1016/j.geoderma.2004.01.032

    Article  Google Scholar 

  45. L. Land, L. Badalucco, F. Pomare, and P. Nannipieri, “Effectiveness of antibiotics to distinguish the contributions of fungi and bacteria to net nitrogen mineralization, nitrification and respiration,” Soil Biol. Biochem. 25, 1771–1778 (1993). doi: 10.1016/00380717(93)90182-B

    Article  Google Scholar 

  46. R. J. Laughlin and R. J. Stevens, “Evidence for fungal dominance of denitrification and codenitrification in a grassland soil,” Soil Sci. Soc. Am. J. 66, 1540–1548 (2002). doi: 10.2136/sssaj2002.1540

    Article  Google Scholar 

  47. A. M. Laverman, H. R. Zoomer, D. Engelbrecht, M. P. Berg, N. M. van Straalen, H. W. van Verseveld, and H. A. Verhoef, “Soil layer-specific variability in net nitrification and denitrification in an acid coniferous forest,” Biol. Fertil. Soils 32, 427–434 (2000). doi: 10.1007/s003740000274

    Article  Google Scholar 

  48. C. Li, S. Frolking, and K. Butterbach-Bahl, “Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing,” Clim. Change 72, 321–338 (2005). doi: 10.1007/s10584-005-6791-5

    Article  Google Scholar 

  49. Q. Lin and P. C. Brookes, “Comparison of substrateinduced respiration, selective inhibition and biovolume measurements of microbial biomass and its community structure in unamended, ryegrass-amended, fumigated and pesticide-treated soils,” Soil Biol. Biochem. 31(14), 1999–2014 (1999). doi: 10.1016/S0038-0717(99)00122-4

    Article  Google Scholar 

  50. B. Ludwig, R. Teepe, V. O. Lopes de Gerenyu, and H. Flessa, “CO2 and N2O emissions from gleyic soils in the Russian tundra and a German forest during freeze-thaw periods-a microcosm study,” Soil Biol. Biochem. 38, 3516–3519 (2006). doi: 10.1016/j.soilbio.2006.06.006

    Article  Google Scholar 

  51. J. E. T. McLain and D. A. Martens, “N2O production by heterotrophic N transformations in a semiarid soil,” Appl. Soil Ecol. 32, 253–263 (2006). doi: 10.1016/j.apsoil.2005.06.005.

    Article  Google Scholar 

  52. I. McTaggart, H. Clayton, and K. Smith, “Nitrous oxide flux from fertilized grassland: strategies for reducing emissions,” in Non-CO 2 Greenhouse Gases, Ed. J. van Ham, et al. (Kluwer, Dordrecht, Netherlands, 1994), pp. 421–426. doi: 10.1007/978-94-011-0982-6-49

    Chapter  Google Scholar 

  53. A. R. Mosier, “Acetylene inhibition of ammonium oxidation in soil,” Soil Biol. Biochem. 12, 443–444 (1980). doi: 10.1016/0038-0717(80)90023-1

    Article  Google Scholar 

  54. A. R. Mosier, C. Kroeze, C. Nevison, O. Oenema, S. Seitzinger, and O. Cleemput, “Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle,” Nutr. Cycle Agroecosyst. 52, 225–248 (1998). doi: 10.1023/A:1009740530221

    Article  Google Scholar 

  55. C. Muller, R. R. Sherlock, and P. H. Williams, “Field method to determine N2O emission from nitrification and denitrification,” Biol. Fertil. Soils 28, 51–55 (1998). doi: 10.1007/s003740050462

    Article  Google Scholar 

  56. D. L. Mummey, J. L. Smith, and H. Bolton Jr., “Nitrous oxide flux from a shrub-steppe ecosystem: sources and regulation,” Soil Biol. Biochem. 26, 279–286 (1994). doi: 10.1016/0038-0717(94)90168-6

    Article  Google Scholar 

  57. J. N. Oades and D. S. Jenkinson, “Adenosine triphosphate content of the soil microbial biomass,” Soil Biol. Biochem. 11, 201–204 (1979). doi: 10.1016/0038-0717(79)90101-9

    Article  Google Scholar 

  58. W. J. Parton, A. R. Mosier, and D. S. Schimel, “Rates and pathways of nitrous oxide production in a shortgrass steppe,” Biogeochemistry 6, 45–58 (1988). doi: 10.1007/BF00002932

    Article  Google Scholar 

  59. R. Prinn, D. Cunnold, R. Rasmussen, P. Simmonds, F. Alyea, A. Crawford, P. Fraser, and R. Rosen, “Atmospheric emission and trends of nitrous oxide deduced from 10 years ALE-GAGE data,” J. Geophys. Res.: Atmos. 95, 18369–18385 (1990). doi: 10.1029/JD095iD11p18369

    Article  Google Scholar 

  60. J. Qiu, C. Li, L. Wang, H. Tang, H. Li, and E. van Ranst, “Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China,” Global Biogeochem. Cycles 23(1007), 16 (2009). doi: 10.1029/2008GB003180

    Google Scholar 

  61. G. P. Robertson and J. M. Tiedje, “Nitrous oxide sources in aerobic soils: nitrification, denitrification and other biological processes,” Soil Biol. Biochem. 19, 187–193 (1987). doi: 10.1016/0038-0717(87)90080-0

    Article  Google Scholar 

  62. J. P. Schimel, M. K. Firestone, and K. S. Killham, “Identification of heterotrophic nitrification in a Sierran forest soil,” Appl. Environ. Microbiol. 48(4), 802–806 (1984). doi: 0099-2240/84/100802-05$02.00/0

    Google Scholar 

  63. H. Shoun, D. Kim, H. Uchiyama, and J. Sugiyama, “Denitrification by fungi,” FEMS Microbiol. Lett. 94, 277–282 (1992). doi: 10.1111/j.1574-6968.1992. tb05331.x

    Article  Google Scholar 

  64. M. J. Scott, R. D. Sands, N. J. Rosenberg, and R. C. Izaurralde, “Future N2O from US agriculture: projecting effects of changing land use, agricultural technology, and climate on N2O emissions,” Global Environ. Change 12, 105–115 (2002). doi: 10.1016/S0959-3780(02)00005-5

    Article  Google Scholar 

  65. K. A. Smith, “Greenhouse gas fluxes between land surfaces and the atmosphere,” Progr. Phys. Geogr. 14, 349–372 (1990). doi: 10.1177/030913339001400304

    Article  Google Scholar 

  66. Proceedings of the International Conference “Soils and the Greenhouse Effect,” Wageningen, Netherlands, Ed. by A. F. Bouwman (Wiley, Chichester, 1990).

  67. K. Spokas, D. Wang, R. Venterea, and M. Sadowsky, “Mechanisms of N2O production following chloropicrin fumigation,” Appl. Soil Ecol. 31, 101–109 (2006). doi: 10.1016/j.apsoil.2005.03.006

    Article  Google Scholar 

  68. R. J. Stevens and R. J. Laughlin, “Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil,” in The 9-th Nitrogen Workshop, Technische Universitat Braunschweig, Forschungsanstalt fur Landwirtschaft (FAL) (Braunschweig, Germany, 1996), pp. 161–164.

    Google Scholar 

  69. E. A. Susyan, S. Wirth, N. D. Ananyeva, and E. V. Stolnikova, “Forest succession on abandoned arable soils in European Russia impacts on microbial biomass, fungal-bacterial ratio, and basal CO2 respiration activity,” Eur. J. Soil Biol. 47, 169–174 (2011). doi: 10.1016/j.ejsobi.2011.04.002.

    Article  Google Scholar 

  70. R. Teepe, A. Vor, F. Beese, and B. Ludwig, “Emissions of N2O from soils during cycles of freezing and thawing and the effects of soil water, texture and duration of freezing,” Eur. J. Soil Sci. 55, 357–365 (2004). doi: 10.1111/j.1365-2389.2004.00602.x

    Article  Google Scholar 

  71. A. C. Tortoso and G. L. Hutchinson, “Contribution of autotrophic and heterotrophic nitrifiers to soil NO and N2O emissions,” Appl. Environ. Microbiol. 56, 1799–1805 (1990). doi: 0099-2240/90/061799-07$02.00/0

    Google Scholar 

  72. R. P. Turco, “The photochemistry of the stratosphere,” in Photochemistry of Atmospheres Earth, the Other Planets, and Comets, Ed. by J. S. Levine (Academic, Orlando, 1985), pp. 77–128.

    Google Scholar 

  73. E. van Moortel, P. Boeckx, and O. van Cleemput, “Inventory of nitrous oxide emissions from agriculture in Belgium — calculations according to the revised 1996 Intergovernmental Panel on Climate Change Guidelines,” Biol. Fertil. Soils 30, 500–509 (2000) doi: 10.1007/s003740050029

    Article  Google Scholar 

  74. G. L. Velthof and O. Oenema, “Nitrous oxide fluxes from grassland in the Netherlands. II. Effects of soil type, nitrogen fertilizer application and grazing,” Eur. J. Soil Sci. 46, 541–549 (1995). doi: 10.1111/j.13652389.1995.tb01350.x

    Article  Google Scholar 

  75. H. M. Walter, D. R. Keeney, and I. R. Fillery, “Inhibition of nitrification by acetylene,” Soil Sci. Soc. Am. J. 43, 195–196 (1979). doi: 10.2136/sssaj1979. 03615995004300010038x

    Article  Google Scholar 

  76. I. Watanabe and M. R. de Guzman, “Effects of nitrate on acetylene disappearance from anaerobic soil,” Soil Biol. Biochem. 12, 193–194 (1980). doi: 10.1016/00380717(80)90058-9

    Article  Google Scholar 

  77. E. A. Webster and D. W. Hopkins, “Contributions from different microbial processes to N2 under different moisture regimes,” Biol. Fertil. Soils 22, 331–335 (1996). doi: 10.1007/BF00334578

    Article  Google Scholar 

  78. World Meteorological Organization, The World Data Centre for Greenhouse Gases (Japan, 2013), No. 37, pp. 26–27.

    Google Scholar 

  79. N. Wrage, G. L. Velthof, M. L. van Beusichem, and O. Oenema, “Role of nitrifier denitrification in the production of nitrous oxide,” Soil Biol. Biochem. 33, 1723–1732 (2001). doi: 10.1016/S0038-0717(01)00096-7

    Article  Google Scholar 

  80. Y. Yanai, K. Toyota, T. Morishita, F. Takakai, R. Hatano, S. H. Limin, U. Darung, and S. Dohong, “Fungal N2O production in an arable peat soil in Central Kalimantan, Indonesia,” Soil Sci. Plant Nutr. 53, 806–811 (2007). doi: 10.1111/j.1747-0765.2007.00201.x

    Article  Google Scholar 

  81. J. C. Yeomans and E. G. Beauchamp, “Acetylene as a possible substrate in the denitrification process,” Can. J Soil Sci. 62, 139–144 (1982). doi: 10.4141/cjss82-015.

    Article  Google Scholar 

  82. T. Yoshinari, R. Hynes, and R. Knowles, “Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil,” Soil Biol. Biochem. 9, 177–183 (1977). doi: 10.1016/0038-0717(77)90072-4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Ananyeva.

Additional information

Original Russian Text © N.D. Ananyeva, K.V. Ivashchenko, E.V. Stolnikova, A.L. Stepanov, V.N. Kudeyarov, 2015, published in Pochvovedenie, 2015, No. 6, pp. 702–714.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ananyeva, N.D., Ivashchenko, K.V., Stolnikova, E.V. et al. Specific features of determination of the net production of nitrous oxide by soils. Eurasian Soil Sc. 48, 608–619 (2015). https://doi.org/10.1134/S1064229315060022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229315060022

Keywords

Navigation