Skip to main content
Log in

Universal Formulas for Calculating Emissivity and Integral Radiation Flux Densities of Black Bodies and Subwavelength Particles

  • RADIO PHENOMENA IN SOLIDS AND PLASMA
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Universal formulas are derived for calculation of the emissivity and integral densities of radiation fluxes for objects having dimensions much greater than the emitted wavelengths (large objects) and subwavelength objects (particles). An advantage of the proposed calculation method based on the theory of modes is related to an exact relationship of the size, shape and temperature of objects and the emissivity and integral densities of radiation fluxes. In addition, the method is easier to implement and more demonstrative in comparison with alternative techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Notes

  1. λmax is the wavelength corresponding to the maximum radiation intensity of black (gray) body heated to temperature T and B is the constant of the Wien displacement formula.

  2. Objects that emit through apertures the dimensions of which are comparable with or less than λmax are studied using the methods that are employed in the study of the SPs with the dimensions of the apertures [8, 11, 12].

  3. Here, large objects are the objects the dimensions of which are significantly greater than λmax.

  4. λcutoff of the ESPs changes when the transverse sizes are changed.

  5. The mean free path is the averaged distance passed by energy carriers prior to collisions (for example, phonon–phonon collisions in insulators or electron–phonon collisions in metals and semiconductors).

REFERENCES

  1. G. Mie, Ann. Phys. (New York) 25, 377 (1908).

    Google Scholar 

  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

  3. L. D. Landau and E. M. Lifshits, Electrodinamics of Continuous Media (Fizmatlit, Moscow, 2005; Pergamon, Oxford, 1984).

  4. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1969; Nauka, Moscow, 1970).

  5. Yu. V. Martynenko and L. I. Ognev, Tech. Phys, 50, 1522 (2005).

    Article  Google Scholar 

  6. L. A. Dombrovskii and N. N. Ivenskikh, Teplofiz. Vys. Temp. 11 (4), 818 (1973).

    Google Scholar 

  7. L. A. Dombrovskii, Teplofiz. Vys. Temp. 37 (2), 284 (1999).

    Google Scholar 

  8. K. Joulain, Y. Ezzahri, R. Carminati, arXiv: 1509,05927v2 [physics. class-ph].

  9. K. Joulain, HAL Id: hal-01860367. https:// hal.archives-ouvertes.fr/hal-01860367.

  10. M. Elzouka1, Ch. Yang, A. Albert, S. Lubner, and R. Prasher, Cell Reports Phys. Sci. 1 (12), 100259 (2020). https://doi.org/10.1016/j.xcrp.2020.100259

  11. A. N. Sviridov and L. D. Saginov, Prikl. Fiz., No. 1, 57 (2021).

  12. A. N. Sviridov and L. D. Saginov, Prikl. Fiz., No. 2, 12 (2021).

  13. A. N. Sviridov and L. D. Saginov, Prikl. Fiz., No. 3, 17 (2021).

  14. R. M. Gal’yardi and Sh. Karp, Optical Communication (Wiley, 1976; Svyaz’, Moscow, 1978).

  15. S. A. Fridrikhov and S. M. Movnin, Physical Bases of Electrical Equipment (Vysshaya Shkola, Moscow, 1982).

    Google Scholar 

  16. G. Gaussorgues, La Thermographie Infrarouge : Principes, Technologie, Applications (Lavoisier, Paris, 1984; Mir, Moscow, 1988).

  17. A. P. Babichev, N. A. Babushkina, et al., Physical Quantities: Reference Book (Energoatomizdat, Moscow, 1991).

    Google Scholar 

  18. A. S. Dmitriev, Introduction to Nanothermophysics (Binom. Lab. Znanii, Moscow, 2015).

    Google Scholar 

  19. D. A. B. Miller, L. Zhu, and Sh. Fan, PNAS 117 (17), 4336 (2017).

    Article  Google Scholar 

  20. B. A. Knyazev and A. V. Kuz’min, Vestn. NGU. Ser.: Fiz. 2 (1), 108 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Sviridov or L. D. Saginov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sviridov, A.N., Saginov, L.D. Universal Formulas for Calculating Emissivity and Integral Radiation Flux Densities of Black Bodies and Subwavelength Particles. J. Commun. Technol. Electron. 67 (Suppl 1), S91–S96 (2022). https://doi.org/10.1134/S1064226922130095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922130095

Keywords:

Navigation